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Earth’s Rotational (Spin) Axis

Introduction to Earth Rotation

• Earth does not rotate at a constant speed, instead

ü  the rotation rate is variable, i.e. the length of day
is changing

ü  the rotation axis moves with respect to geography
(i.e. Polar Motion; quasi-stationary seen from
inertial space)

• Reasons:

   a) Torques exerted by sun, moon, planets (Precession, Nutation)

   b) Rotational axis & Figure axis not aligned (Wobble)

   c) Tides & Geodynamic Processes on & within the Earth
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Modern Geodetic Techniques
for Earth Rotation Measurement

• Very Long Baseline Interferometry (VLBI)

• Satellites of the Global Positioning System ( GPS) or of
the Global Navigation Satellite System (GLONASS)

• Laser Ranging to artificial earth satellites of the Lageos- or
Starlette (Satellite LAser Ranging)

• Earth remote sensing satellites like ERS1, ERS2 and
TOPEX/POSEIDON

• Laser Ranging to the retroreflectors deployed on the
Moon’s surface (Lunar Laser Ranging)
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The
European
Geodetic

VLBI
Network

Wettzell -Onsala (919 km)

Eurasia-North America
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Very Long Baseline Interferometry

 Employing state-of-the-art geophysical
models and a sophisticated least squares
parameter estimation process the delays are
adjusted and the relevant parameters like
station coordinates, baseline lengths, radio
source positions and Earth rotation
parameters (precession, nutation, polar
motion and Universal Time) are determined.

Lunar Laser Ranging (LLR)
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Lunar Laser Ranging (LLR)

• The Earth-Moon distance varies between 56 and
64 Earth radii.

• The observatories fix a reference frame on Earth
& the reflector arrays on the Moon.

• By analyzing the observations (round trip travel
times of laser pulses), one can determine the Earth
Rotation, parameters describing the dynamics of
the Earth-Moon system and relativistic quantities.

Satellite LAser Ranging

High orbiting satellites (LAGEOS I and II, 6000 km; ETALON, GPS
20000 km) are in particular suitable for the estimation of the EOP.
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Satellite LAser Ranging (SLAR)
• The satellite’s state at any time is the set of its position and

velocity as well as parameters which appear in the dynamic
acceleration model or the measurement model. The motion
of the satellite is governed by a differential equation
system that is integrated to determine the state at any later
time. Errors in initial values and models necessitate the
introduction of observations to the real satellite’s motion to
obtain a better trajectory.

• Observation equations taking the partial derivatives and the
difference of calculated and observed distance from the
orbit determination can be solved for the parameters of
interest.

• For EOP, a global network of SLR stations renders the
estimation of the point about which the stations are rotating
during the observation time. A transformation to an earth-
fixed reference frame yields the pole coordinates.

Terminology

• Length of Day (LOD)

• Precession, Nutation

• Polar Motion, True Polar Wander, Wobble

• Chandler Wobble, Annual Wobble

• Near Diurnal Free Wobble

• Tidal Friction & Nontidal Acceleration

• Pole Tides

• Decade Fluctuations

• Tisserand System & Conventional Terrestrial System
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Variable Rotation Rate (1)
(change in "the length of day")

• 50 years ago, time was kept by watching transit time of

stars. This is Universal Time (UT) or Greenwich time

• When atomic clocks were developed in 1950’s, it was

found that UT didn’t agree with atomic clock time (AT).

Since AT is "constant", UT is variable. For an increase in

rotation rate, there is a decrease in the length of day

(LOD):

    and                   = number of seconds per day if there were

no variation in rotation. The change is of the order of 10-8

LOD

LODo
= − (t)

o
2

o
= LODo

Variation in LOD

These variations consist mainly of a secular trend, long-
period variations and seasonal variations with an annual and
a semiannual period.
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Decade Fluctuations of LOD

• Decade fluctuations in LOD are believed to be due
to the transfer of angular momentum between the
fluid core and the solid mantle. This requires
torque at the Core Mantle Boundary (CMB)

• Possible Mechanisms:

ü Pressure or inertial coupling due to the ellipticity
of the CMB

üTopographic Coupling

üViscous coupling

üElectromagnetic Coupling

LOD variation revealed
from Historic Eclipse

Observations

The shadow path of an ancient
Babylonian solar eclipse
computed with several
assumptions:
a) a constant angular Earth's
rotation rate.
b) a constant change in the
Earth's rotation rate due only
to tidal friction.
c) In accordance with the
observed Eclipse
circumstances.
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LOD Variations
Non-tidal changes of the Earth's
r o t a t i o n  r a t e  a s  o b s e r v e d  from
telescopic data. Accurate astrometrical
satellite data exists only for the last 25
years. Secular changes of the Earth's
rate of rotation can only be determined
with the help of medieval and ancient
astronomical observations.
According to Stephenson & Morrison a
long-term fluctuation in the l.o.d. with a
semi-amplitude of some 4 ms and a
period of 1500 yr may exist.
A careful critical review of medieval
Arab eclipse records shows that the
h i s t o r i c a l  s o u r c e s  a r e  n o t  in
contradiction with a constant secular
change in the Earth's rotation rate.

Coral & Stromatolite data shows that 500 Ma BP,

there were ~420 days/year (due to tidal deceleration)
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Variable Rotation /Spin Rate (2)

• Paleo-rotation data: there were ~420 days/year during

Cambrian period ~500 Ma ago(Tidal Friction)

• Linear increase of ~2 ms per century (Tidal Friction &

Postglacial Rebound)

• Decade fluctuations of about 4-5 ms over 20-30 years

• Annual and shorter period fluctuation (atmosphere)

• Modern  t echn iques :  VLBI  (very-long-baseline

Interferometry), LLR (lunar laser ranging) & SLR (satellite

laser ranging). Accuracy: better than 0.1 ms for averages

over 3-5 days. (Results improve when longer averaging

times are used.)

Reference Frame for Deformable Earth

• Tisserand System -requires the residual motions of
all parts of the Earth to be a minimum in this so
called. This reference frame can be thought of as
being realised by the rotation of a rigid body.

• Conventional Terrestrial System (CTS) is a rigid
reference frame co-rotating with the Earth in
inertial space with angular velocity 
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Nutation & Precession

• These are motion of the spin (CTS) axis with respect to
inertial space (in practice, relative to a quasi-inertial frame
tied to the ecliptic and equinox at a certain epoch).

• Precession generally refers to the slow motion with period
of ~26,000 years while Nutation superposes a small
nodding motion with a period of 18.6 years and an
amplitude of 9.2 seconds of arc.

• They are caused by the gravitational torques of the Moon
and Sun on the spinning Earth’s equatorial bulge. (The
plane of the Moon’s orbit around the Earth is tilted by
about 5o from the plane of the Earth's orbit around the
Sun.)
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Nutation in Longitude detected by VLBI

Nutation as seen by VLBI
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Polar Motion measured by VLBI

Polar Motion- wobble & polar wander

• Polar Motion - motion of the spin (CTS) axis with respect
to the earth’s surface. Although the departure of Ω from e3
is under 0.4", it varies in both space and time.  Wobble is
the periodic polar motion while Polar Wander i s  the
aperiodic drift superposed. For an observer at the Earth's
surface, Polar Motion results in latitude variations and
variation in LOD.

• Polar motion is generally due to deformation within the
Earth (wind, ocean current, mantle and core flow) and the
excitation has periods much longer than one day as seen by
an observer on the Earth.

• Motion which has long period as seen from Earth is actually diurnal
prograde motion that is seen from inertial space.  Motion which is
approximately diurnal as seen from the Earth has long period as seen
from inertial space. So, for the wobble motion, the earth fixed axis
moves around diurnally in inertial space.
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Polar Motion (continue)

• In  fac t ,  nutation cannot occur without some
accompanying polar motion or  vice versa.  For
example, a small part of polar motion is the ‘dynamical variation of
latitude’ as Ω traces out a nearly diurnal retrograde circuit in the CTS
of amplitude ~0.02", due to the forced nutations.

• Free Chandler wobble (period ~ 433 sidereal days)
and forced Annual wobble (amplitude ~0.1 arcsec
or 5 m)

• Polar wander rate of ~1o/Ma towards Hudson Bay
today (due to postglacial rebound)

• Longer term True Polar Wander & Continental
Drift

ILS data
showing 
Secular
(True)
Polar Wander
(blue lines) 
superposed
on the oscillatory
signal.
The  7 year beat in 
the signal is a 
consequence of the
superposition of 
The 12 month 
forced annual 
wobble and the
14 month Chandler
wobble.



15

3-D Simulations of Mantle Convection and
the Earth's True Polar Wander

Paul Tackley, David Stevenson, Gary Glatzmaier

True Polar Wander (TPW) in a mantle
convection simulation at Ra= 1.5x 106.
Time variation of the difference between
largest and second largest principal
moments of inertia (right); Time variation
of the ratio of TPW velocity to average
(r.m.s.) convective velocity (bottom); path
of rotationpole relative to mantle reference
frame during simulation (bottom right).
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Chandler Wobble

Chandler Wobble (1)

• Discovered in 1891 by S. C. Chandler. This motion, due to
the dynamic flattening of the Earth, appears when the
rotation axis does not coincide with one of the main axes
of inertia. Without any external torque, the total angular
momentum remains constant in magnitude and direction,
but the Earth spins so that related to its surface, the
instantaneous rotation axis moves around the main inertia
axis.

• The observed period of Chandler wobble is about 433
sidereal days. (In inertial space, this motion is a quasi-
diurnal mode of which the period equals 1+(1/433) day.)
Some studies found several (2-5) peaks in the Chandler
band. The observed amplitudes about  0.1-0.2 arcsec.
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Chandler Wobble (2)

• For a rigid Earth, Euler showed that the pole displacement
in the terrestrial frame produces a latitude variation with a
period of 305 days.

• If one takes into account of the elasticity of the Earth, then
the period increases to 445 days.

• Including the fluid core below the elastic mantle would
reduce the period to about 405 days.

• Further inclusion of the small pole tide set up in the oceans
by centrifugal force would increase the period by ~30 days

• If one accounts for dissipation in the mantle, core and
oceans, then the predicted period would come close to the
observed period of about 433 days.

Chandler Wobble (3)

• Chao (1983) explains the multiple peak structure
in the Chandler band with the existence of non-
elastic layers in the Earth (e.g. hydrosphere,
asthenosphere & outer core) and their coupling
with the visco-elastic spheres of the Earth

• The broadening of the Chandler frequency give
quality factor Q~179 (i.e. decay time ~68 years),
so that the amplitude would quickly dampen to
zero unless some mechanism or combination of
mechanisms are exciting it

• Plag (1997) hypothesized that the Chandler
wobble is a forced, quasi-periodic motion close to
a resonance period
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Chandler Wobble (4)
• This free oscillation can be excited by mass redistribution

in atmosphere, oceans and mantle (due to earthquakes).
• However, the changes in moment of inertia due to

earthquakes are orders of magnitude too low and the
occurrence of earthquakes are not frequent enough to
sustain Chandler wobble. In the 1990's, attention turned to
atmospheric forcing as the main cause of Chandler wobble

• Gross (2000) reports that the principal cause of the
Chandler wobble is fluctuating pressure on the bottom of
the ocean, caused by temperature and salinity changes and
wind-driven changes in the circulation of the oceans. Gross
calculated that two-thirds of the Chandler wobble is caused
by ocean-bottom pressure changes and the remaining one-
third by fluctuations in atmospheric pressure. Apparently,
the effect of atmospheric winds and ocean currents on the
wobble was minor

Correlation of Annual Wobble (y-component) &
LOD with Atmospheric Angular Momentum
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CMB Ellipticity & Free Core Nutation
(Near Diurnal Free Wobble)

NDFW = − 1 + C

Cm

 

 
  

 

 
  NDFW = FCN −

Ω

= ε

Near Diurnal Free Wobble (NDFW) &
Free Core Nutation (FCN)

• The CMB is elliptical, then the inertia of the core would
resist the tilt of the mantle by inertial coupling. Thus, if the
rotation axis of the mantle and core become misaligned,
then the restoring forces at the elliptical CMB will try to
realign the two axis. Because the earth is a fast spinning
gyro, the reaction is a damped wobble of the instantaneous
rotation axis around the figure axis (NDFW) when
observed in the terrestrial reference frame. The moton of
the pole is retrograde about the body axis with period ~ 1
sidereal day (differ by about 4 minutes).

• Viewed from the celestial frame (e.g. VLBI) it is called
Free Core Nutation (FCN) and has a period of 432 days.
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Near Diurnal Free Wobble (NDFW) &
Free Core Nutation (FCN)

• The closeness of the frequencies of the NDFW mode and
the  diurnal tidal frequency band means that there is
resonance between them. The NDFW resonantly amplifies
nearly diurnal tides and annual and semiannual nutations.

• Observing the NDFW / FCN is thus very useful to measure
the CMB flattening and to obtain information about the
dissipation effect at this interface.

• Existence of the solid inner core leads to 2 additional
eigenmodes, an inner core wobble with frequency far
outside the diurnal band and a prograde free inner core
nutation with its associated wobble.

Superconducting Gravimeter Observation of
NDFW-FCN at Postdam
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Near Diurnal Free Wobble (NDFW) &
Free Core Nutation (FCN)

• Existence of the solid inner core leads to 2 additional
eigenmodes, an inner core wobble with frequency far
outside the diurnal band and a prograde free inner core
nutation with its associated wobble.

• Unambiguous direct observation of the FCN with an
amplitude of 174 µas was achieved by Herring & Dong
(1994) in an analysis of 8 years of VLBI data. The wobble
amplitude is 400 times smaller and is thus more difficult to
measure

• Jiang & Smylie (1995) also claimed the detection of a
retrograde nutation with a period of 43120 solar days in the
nutation data obtained with VLBI.

Earth Tides

• Body Tides

• Ocean Tides

Oceanic M2
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Influence of ocean tides on polar motion

Polar motion due to the
superpos i t ion  o f  the
influences of 6 partial
tides in the semidiurnal
(M2, S2 , N2) and diurnal
(K1, O1 , P1 ) tidal bands.
Although the sectorial excitation
due to the M2-tide has no direct
i n f l u e n c e  o n  p o l a r  motion
because of its symmetry, the
existence of a M2 -part with
tesseral distribution of amplitudes
in the unsymmetric world oceans
can be observed. This excites an
indirect influence of about 0.5
mas in polar motion.

Influence of ocean tides on UT1
This shows the influence on
UT1 due to the M2 - and N2

-tide for 10 days.
Variations in UT1 can be
c o m p u t e d  usi n g  the
component  of the  total
oceanic angular momentum
parallel to the Earth's axis
of rotation. Introducing
angular momentum values
from an ocean tidal model
the amplitudes and phases
for the influence of special
partial tides on UT1 can be
determined.
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Pole Tide (1)

• Tide gauge data shows that in North Sea and
Baltic Sea, there is a statistically significant signal
at Chandler Wobble frequency, with amplitude of
a few cm - i.e. several times larger than expected
from the equilibrium theory

• The pole tide is not due to astronomical forcing, as
are the luni-solar tides

• Poles Tides are due to changes in the centrifugal
forces during Chandler wobble which produce a
signal in sea level at the same frequency

Pole Tide (2)
• Whether the response of sea level to the Chandler wobble

(the  Pole Tide ) is equilibrium or dynamic will determine
if the oceans can be a substantial sink of the energy of the
wobble, and, therefore, will possibly constrain an
alternative mechanism, namely mantle anelasticity at low
frequencies. Since Pole tides are not due to astronomical
forcing, there is no a priori reason for expecting an
equilibrium response

• Recent models found that without the need of a non-
equilibrium oceanic pole tide, the sea level variability at
the Chandler Wobble frequency can be explained for the
North Sea in terms of meteorology alone. It is unknown,
however, whether the wind-stress signal is connected to
the wobble of the axis of rotation of the Earth, either as a
product of the wobble or as an excitation mechanism of the
wobble. These questions remain the subject of further
research
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Tidal Friction (1)

• The Moon deforms the Earth and oceans into the
ellipsoidal shape

• The orientation of the ellipsoidal bulge is fixed
with respect to the Moon, while the Earth rotates
at 1 cycle/day relative to the bulge. The resulting
lunar tides are time dependent, with frequencies
equal to integral multiples of 1 cycle/day,
modulated by the frequencies of the lunar orbit
(e.g. 1 cycle per 27.7 days and 1 cycle per 13.7
days)

Tidal Friction & Earth-Moon Distance
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Tidal Friction (2)
• If there were no energy dissipation in the Earth and oceans,

the ellipsoidal bulge should point towards the Moon.
However, there is some dissipation and the maximum tidal
uplift occurs shortly after the Moon is overhead, and the
bulge leads the Earth-Moon vector by a small angle δ ∼3ο.
(From δ, seismic attenuation or quality factor Q can been
estimated to be ~20 and is lower than most seismic
estimates.)

• The Moon’s gravitational force acts on the tide bulge to
produce a clockwise torque on the Earth, opposite to its
rotation.  Thus,  there is  an increase in LOD (Tidal
Deceleration) of ~ 2.3 ms/century

• There is a similar, although smaller, effect from the sun

Tidal Friction (3)
• Most of the tidal energy dissipation is believed to

occur in the oceans. It is still not entirely clear
whether most of the dissipation occurs in shallow
seas or in deep oceans

• The Earth’s tidal bulge causes a counter-clockwise
torque in the direction of the Moon’s motion, thus
increasing its angular momentum. The increase in
lunar angular momentum causes the Moon to
move farther away from the Earth at a rate of ~4
cm/a and to increase its orbital period. This
increase in period has been determined accurately
from LLR data.
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Tidal Friction (4)
• The tidal bulge perturbs the orbit of a satellite, thus by

ranging to satellites such as LAGEOS, the lag angle δ can
be determined. The lunar torque on the Earth can also be
determined from δ and thus the change in LOD can be
calculated. This predicted increase in the LOD is about
25% larger than that implied by the historical eclipse
record (~1.7 ms/century)

• The reason for this discrepancy is due to Postglacial
Rebound, which cause a net transfer of mantle material
toward the poles. This redistribution of internal mass
decreases the earth’s polar moment of inertia and give rise
to the observed non-tidal acceleration of  the  Earth.
Postglacial rebound also causes a net polar wander towards
Hudson’s Bay today

Tidal Friction (5)

• If the dissipation rate inferred from LLR and SLR
are used to extrapolate the present lunar orbit
backward in time, the Moon is predicted to be so
close to the Earth 1.5 Ga ago that it would be torn
apart by gravitational forces from the Earth.
However, the Moon is over 4 Ga old. This implies
that tidal friction is larger now than it was in the
past. Since the dissipation is sensitive to the shape
of the ocean basins and to the rotation rate,
continental drift may be responsible for the
temporal variation of tidal dissipation
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Measurements of Non-tidal Acceleration

Source                                                   (10    /year)

Currot (1966)                                     0.7   + 0.3
Muller & Stephenson (1975)             1.5   + 0.3
Morrison (1973)                                 2.9   + 0.6
Lambeck (1977)                                 0.69 + 0.3

-10ω  /Ω3
.

i.e. length of day decrease by ~0.7 ms/century

Wu & Peltier (1984) showed that Nontidal Acceleration
=  the time rate of change of J   multiply by the constant

2
2ME RE

2

3C

LAGEOS 
Measurements
Of J   dot n

n=2      -2.7 + 0.4
n=3      -1.3 + 0.5
n=4      -1.4 + 1.0
n=5        2.1 + 0.6
n=6        0.3 +0.7

J   (x 10      /year)-11
n

.
From Cheng et al (1997)

 -
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Nontidal Acceleration

length of day decreases by ~0.7 ms/century

Earth’s spin axis tend to
align itself with the
Axis of Greatest
Moment of Inertia

Secular 
Polar Wander
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Predicted
True Polar 
Wander 
Path
due to 8
Glacial
Cycles

Euler Equation for the conservation of angular momentum: 

d

dt
Jij j( ) + ijk j J kl l = 0

In the unperturbed state, Jij[ ] =
A 0 0

0 B 0

0 0 C

 

 

 
 
 

 

 

 
 
 B ≈ A

0

0

 

 

 
 
 

 

 

 
 
 

Jij[ ] =
A + I11 I12 I13

I12 A + I 22 I23

I13 I 23 C + I33

 

 

 
 
 

 

 

 
 
 

m1

m2

+ m3

 

 

 
 
 

 

 

 
 
 

where 

with angular velocity vector : 

In the perturbed state, the angular velocity vector is 

and
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Liouville’s Equation- linearized Euler Equations

i

r
˙ m + m = ˙ m 3 = ˙ 3

r =
C − A( )

A

m = m1 + im2

= 1 + i 2 1 = I13

C − A( )
+

˙ I 23

C − A( )

2 = I23

C − A( ) −
˙ I 13

C − A( ) 3 =
−I33

C

is the Chandler frequency of a rigid earth, 

and 

where                                    and

and the Excitation Functions are (Munk & MacDonald 1960):

= Rot + Load

= 1
3

2r2 + GM

r

a

r

 
  

 
  

2
C 2 m cos(m ) + S2 m sin(m )[ ]P2

m cos( )
m=0

2
∑

C20 = a 3

6GM
1
2

+ 2
2

− 2 3
2( ) ⊗ k2

T

C21 = −
a 3

3GM 1 3 ⊗ k2
T

C22 = a 3

12GM
2
2 − 1

2( ) ⊗ k2
T

S21 = − a 3

3GM 2 3 ⊗ k2
T S22 = − a 3

6GM 1 2 ⊗ k2
T

First consider the Excitation due to Rotation:
following Lambeck(1980), the centrifugal potential is:

where
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I13
Rot ≅

k2
T

k f

⊗ m1 C − A( )

Using MacCullagh’s formula (Munk & MacDonald 1960):

I 23
Rot ≅

k2
T

k f

⊗ m2 C − A( )

k f = 3G

a 5 2
C − A( )

1
Rot

=
k2

T

k f

⊗ m1 +
˙ m 2 

 
 

 
 
 ≅

k2
T

k f

⊗ m1

2
Rot

=
k2

T

k f

⊗ m2 −
˙ m 1 

 
 

 
 
 ≅

k2
T

k f

⊗ m2

Rot = 1
Rot + i 2

Rot =
k2

T

k f

⊗ m1 + im2

 
  

 
  

where

Thus

and

i

r
˙ m + m − k2

T

k f

⊗ m = Load

˙ m 3 = ˙ 3

Thus, Liouville’s Equation becomes

Polar Motion

As shown in Wu & Peltier (1984), the first term in the equation

for Polar Motion contains the contribution of the Chandler

Wobble. Thus

where  m only contains secular variations.

1− k2
T k f[ ] ⊗ m = Load

Length of Day
Variation
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Surface Mass Load & Induced Deformation (1)

I ij = 1 + k2
L[ ] ⊗ I ij

R

1
Load = 1 + k2

L( ) ⊗
I13

R

C − A( )
+

˙ I 23
R

C − A( )
 

 
  

 

 
  

Inertia Perturbation for  Deformable Earth is :

Thus,

2
Load = 1 + k2

L( ) ⊗
I 23

R

C − A( )
−

˙ I 13
R

C − A( )
 

 
  

 

 
  

3
Load = − 1 + k2

L( ) ⊗
I 33

R

C

where           is the Inertia Perturbation for a Rigid EarthIij
R

Surface Mass Load & Induced Deformation (2)

The Inertia Perturbation on a rigid earth :

  
I ij

R =
r 
x ( ) xrxr ij − xix j[ ]

S
∫∫

a

a+h

∫ dSdr

where  S  is the surface of the earth. Since  h<<a, 

I ij
R = , , t( ) xr xr ij − xi x j[ ]

S
∫∫ dS

, , t( ) = nm1 t( ) cos(m ) + nm2 t( ) sin(m )[ ]
m=0

n
∑

n=0

∞
∑ Pn

m cos( )

where
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Surface Mass Load & Induced Deformation (3)

Using the orthogonal relationship for un-normalized Associated
Legendre  function :

Pn
m cos( )

cos m( )
sin m( )

 

 
 
 

 

 
 
 

∫∫
2

dS =
4 n + m( )!

2n +1( ) n − m( )! 2 − 0 m( )

Therefore:

since mass is conserved in GIA                 therefore

I33
R = − 8

15
a 4

201

I13
R + iI23

R = − 4
5

a 4
211 + i 212[ ]

I33
R = 8

3
a 4

001 − 201

5

 

 
 
 

 

 
 
 

001 = 0

Summary of Equations in Time Domain

1
Load = −4

5
a4 1+ k2

L( )
C − A( ) ⊗ 211 t( ) + ˙ 212 t( )[ ]

2
Load = −4

5
a4

1+ k2
L( )

C − A( ) ⊗ 212 t( ) − ˙ 211 t( )[ ]

3
Load = 8

15
a4

C
1 + k2

L( ) ⊗ 201 t( )

˙ m 3 = ˙ 3
Load

1− k2
T k f[ ] ⊗ m1 + i m2{ } = 1

Load + i 2
Load
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Variation in LOD and J2-dot

Jnmi t( ) = 4 a2

M

1 + kn
L t( )[ ]

2n +1( ) ⊗ nmi t( )

˙ m 3(t) = 8
15

a4

C t
1 + k2

L 
   

  ⊗ 201 t( )   
   

, , t( ) = ag Jnm1 t( )cos(m ) + Jnm2 t( )sin(m )[ ]
m=0

n
∑

n=0

∞
∑ Pn

m cos( )

= 4 a3g
M

1+ kn
L

2n + 1

 

 
  

 

 
  ⊗ nm1 t( )cos(m ) + nm2 t( )sin(m )[ ]

m=0

n
∑

n=0

∞
∑ Pn

m cos( )

Expanding the potential perturbation as surface mass density:

˙ J 2 t( ) = −
3C

2a 2 M
˙ m 3 t( )

Comparing the two :

Therefore:

Love Number Approach for Polar Wander (1):

k2
L s( ) = k2

LE + ri
s − sii=1

N

∑ = −1 + ls + s
ri si
s − sii=1

N

∑

k2
T s( ) = k2

TE + ti
s − sii=1

N

∑ = k2
T 0( ) + s

ti si
s − sii=1

N

∑

Load
and
Tidal
Love Numbers

defining g j =
t j s j

t i si( )
i=1

N

∑
k f = r

o
ti si( )

i=1

N

∑ o

r
=

k2
T 0( ) − k2

TE

k2
T 0( )

QN −1 s( ) =
g j

s − sii=1

N

∑
 

 
  

 

 
  s − s j( ) =

j=1

N

∏ s + j( )
j=1

N −1

∏

q s( ) = s s + j( )
j=1

N−1

∏ − s − s i( )
i=1

N

∏ R j s( ) = s + j( )
j=1

N−1

∏ − s − s i( )
i≠ j
∏
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Love Number Approach for Polar Wander (2):

˙ m j t( ) =
A o

D1
˙ I j 3

R t( ) + D2I j3
R t( ) + Ei t e− it ⊗ I j3

R t( ){ }
i=1

N−1

∑
 

 
 
 

 

 
 
 

D1 = ls − ri si( )
i=1

N

∑ =1 + k2
LE

D2 = −lsq 0( ) i
i=1

N−1

∏

Ei =
lsq − i( )

i
+

rj R j − i( )
s jj=1

N

∑
 

 
 
 

 

 
 
 k − i( )

k≠i

N−1

∏

m j t( ) =
A o

D1I j 3
R t( ) + D2 I j3

R t '( )
t'=0

t
∫ dt '+ Ei e− it ⊗ I j3

R t( ){ }
i=1

N−1

∑
 

 
 
 

 

 
 
 

Mitrovica & Milne 1998
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Mitrovica & Milne 1998

Sawtooth glacial cycles
Deglaciation ended at 6 ka
BP
PREM Earth Models
100 km Lithosphere
1x1021 Pa-s Upper Mantle
nx1021 Pa-s Lower Mantle

Polar Wander & J2-dot

• Observation not all due to last deglaciation,
current melting and other mantle processes
(mantle convection, mountain building,
etc.) may have contributions

• J2-dot sensitive to lower mantle viscosity
but not M1 mode nor lithospheric thickness

• Polar Wander Speed sensitive to :
    lower Mantle viscosity,
    lithospheric thickness
    compressibility
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Wu (1982)

Prove that the inertia perturbation due to deformation: Iij
D = k2

L ⊗ Iij
R

By definition: Iij
D = 1

V
∫∫∫ xr xr ij − xi x j( )dV + 0 a( ) a 2

ij − xi x j( )
S
∫∫ u a( )dS

Below, we will only consider I33
D  - the other components will follow similarly. For I33

D , the above

becomes: I33
D = 1

V
∫∫∫ x1

2
+ x2

2( )dV + 0 x1
2 + x2

2( )
S
∫∫ u a( )dS

The gravitational potential can be decomposed into the direct contribution from the load and internal

mass redistribution: 1 = 2 + 3 = 1+ kn( )
n
∑ 2,n Pn

m
cos( ) . So that ∇ 2

2 = 0  and

∇ 2
3 = 4 G 1.

Now from Green’s identity:

  V
∫∫∫ Z∇ 2

Y − Y∇ 2
Z( )dV = Z ˆ n ⋅

r 
∇ Y − Y ˆ n ⋅

r 
∇ Z( )

S
∫∫ dS

using Y = 3 and Z = x1
2 + x2

2 = 2
3 r 2 P0

0(cos ) − P2
0 (cos )[ ]

where ∇ 2Z = 1

r 2 r
r 2 Z

r

 
  

 
  +

1

r 2 sin
sin

Z 
  

 
  = 4

            ˆ n ⋅ ∇Z =
r

Z = 4
3 r 1− P2

0(cos )[ ] = 2
r

Z

we get: I33
D = 1

4 G
4 3

V
∫∫∫ dV + 2

3
a 2 P0

0 − P2
0( )

S
∫∫ a( )dS

 

 
 
 

 

 
 
 

 where =
r 3 − 2

3 3 + 4 G 0 u

In the transformed s-domain, expanding: 3 = 3,n r( )Pn
0 cos( )

n
∑ ,  u = U n r( )Pn

0 cos( )
n
∑ ,

= n r( )Pn
0 cos( )

n
∑

then 3
V
∫∫∫ dV = 4 r 2

0

a

∫ 3,n r( )dr

and P0
0 − P2

0( )
S
∫∫ a( )dS = 4 a 2

0 a( ) − 1
5 2 a( )[ ]

thus, I33
D = 4

G
r 2

3,0 r( )dr + a 2 M
g

2
3 0 a( ) − 2

15 2 a( ) 
  

 
  

0

a
∫

In order to express the n  in terms of kn
L use the definition of the gradient of potential:



Qn =
r 3,n + n+1( )

a 3,n + 4 G 0Un

and by comparing with the definition of n , we see that n a( ) = Qn a( ) − n+ 3( )
a 3,n a( )

Since Qn a( ) = 0 ,  n a( ) = − n+3( )
a 3,n a( ) = n + 3( ) g

M
kn

L Ln

where Ln = a2 ,( )∫∫ Pn
0 cos( )dS = 4 a2

2n + 1( ) n 01
 and I33

R = − 2
3 a2L2

Thus, I33
D = 4

G
r 2

3,0 r( )dr + 2a2k0
L L0 − 2

3
a2k2

L L2
0

a
∫

For glacial loading events, the n=0 response is never excited because 001 = L 0 = 0 , thus in the

transformed s-domain: I33
D = − 2

3 a2k2
L L2 = k2

L I33
R

Other components can be derived similarly.
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GIA with Nonlinear Rheology

• Definition

• Interaction between Ambient Tectonic Stress and
‘Rebound’ Stress (due to GIA process)

• Modeling with Tectonic-Rebound Stress
Interaction

• Modeling without Tectonic-Rebound Stress
Interaction

Diffusion creep dominates for low stress level or small grain size
Dislocation creep dominates for high stress level or large grain size
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Transition between Diffusion & Dislocation Creep
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GIA with Nonlinear Rheology

• Definition

• Interaction between Ambient Tectonic Stress and
‘Rebound’ Stress (due to GIA process)

• Modeling with Tectonic-Rebound Stress
Interaction

• Modeling without Tectonic-Rebound Stress
Interaction
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Tectonic & Rebound Stress Interaction 1

If both rebound & tectonic stresses are present

Substituting this into the creep law

where

gives

where

  σ' ij = σ' ij
T +σ' ij

R

  
εij

C = A* σ'E
n-1 σ' ij

σ' E = 1
2

 σ' ij  σ' ij

  
σ'TE = 1

2 Σ
i, j

σ'i j
T σ'i j

T

  
εij

C = εij
T +A σ'TE

n - 1σ ' ij
R + A*

n - 1
2 σ'TE

n - 3σ' ij
T Σ

i, j
σ' ij

T σ 'ij
R

  

σ'E = σ 'TE + 1
2

Σ
i, j

σ 'ij
T σ' ij

R

σ'TE

  
εij

T = A* σ'TE
n-1 σ' ij

T

Tectonic & Rebound Stress Interaction 2

  
εij

R = A* σ 'TE
n - 1σ 'ij

R + A*
n - 1

2 σ'TE
n - 3σ 'ij

T Σi, j
σ 'ij

T σ' ij
R

Thus, the strain rate seen by rebound is:

From

one gets

where

  
ηeff =

ηeff
T

1 + n - 1 1
2

Σ
i, j

σ 'ij
T σ' ij

R

σ 'TE
2

  ηeff
T = 1

3 A* σ 'TE
n - 1

  ηeff =
1

3 A* σ'E
( n - 1 )
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Tectonic & Rebound Stress Interaction 3

Consider the case when rebound & tectonic stress are orthogonal

then

Thus, although the creep law is nonlinear, rebound only ‘sees’ a
linear creep law with the effective viscosity dependent on the
tectonic stress distribution.
Also, the creep law seen by the ij-th component is different from
the kl-component - thus rebound sees a linear but anisotropic
creep law.

  Σ
i, j

σ' ij
T σ 'ij

R = σ'kl
T σ'kl

R

  
εkl

R = 1
2 A* σ'TE

n - 1 n - 1 σ 'kl
T 2 σ 'TE

2 + 2 σ'kl
R

  εij
R = A* σ 'TE

n - 1σ 'ij
R

Question:

Can observations of postglacial rebound
tell whether the rheology of the mantle is

linear or nonlinear?

Answer:
Yes for RSL sites outside the ice margin !

The tectonic stress level is important too!
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Interaction of Ambient Stress with Rebound Stress

Find the combination in
 (A*, Tectonic Stress Level)

that can fit the sealevel data in Laurentia
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13 sites inside former
             ice margin
  4 sites at the former
             ice margin 
14 sites outside former
             ice margin
_________________
Total of 31 sites with
           lengthy records

Uniform Nonlinear Rheology A=3E-36 n=3
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Uniform Nonlinear Rheology A=3E-35 n=3

Uniform Nonlinear Rheology A=3E-34 n=3
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Summary for the case with
Tectonic-Rebound Stress Interaction:

• RSL data  jus t  outs ide  the  ice  margin can
distinguish linear mantle from nonlinear mantle

• RSL data inside the ice margin can be explained
by both linear and nonlinear rheology

• Nonlinear Uniform Mantles with A=3x10-35, n=3
and Tectonic Stress Level ~ 10 MPa can explain
the RSL data in and around Laurentia

Karato (1998):
Since the strain due to GIA is

orders of magnitude smaller than
tectonic strain, there is no

interaction between rebound &
tectonic stress
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Rheology Models considered

Depth
(km)
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For Uniform
Mantles with

Nonlinear
Rheology,
increasing
the ICE3G

thickness by
a factor of h

do NOT
help with
explaining
the  RSL

data outside
the ice
margin
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Comparing  Predictions with Observations

• Relative sea levels
• Uplift Rate
• Horizontal velocity
• Rate of change of Absolute Gravity
• J2-dot (2nd degree harmonic of the Earth’s

gravity field)
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n =1
U1 & NLZ

n =2
NLLM

n =3
NLLM

n=4
NLLM

Present day Uplift Rate [mm/a]
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Present day Uplift Rate [mm/a]
Tectonic Stress Level= 10 MPa , A=3E-35 n=3 

Goddard Space 
Flight Center
VLBI Solution
KB 2001cn
Version 1

Difference from 
Rigid North American
Plate Velocity
NUVEL1A-NNR

1 σ (realistic) 
Error ellipses
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NLLM

n=4
NLLM

n=3

Horizontal Velocity [mm/a]
Tectonic Stress Level= 10 MPa , A=3E-35 n=3
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Comparing  Predictions with Observations

• Relative sea levels
• Uplift Rate
• Horizontal velocity
• Rate of change of Absolute Gravity
• J2-dot (2nd degree harmonic of the Earth’s

gravity field)

Absolute Gravimeter FG5 & measured Rates of Change in Gravity

(Courtsey of  A. Lambert)
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NLLM
n=4

NLLM
n=3

Gravity Rate of Change (µgal/a)
Tectonic Stress Level= 10 MPa , A=3E-35 n=3
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Summary

• Relative sea levels:

   1) reject uniform mantle with nonlinear rheology unless
there is rebound-tectonic stress interaction and tectonic
stress level is ~ 10 MPa  and  A* = 3x10-35 n=3

    2) Nonlinear Lower Mantle has the best Chi-Square fit

    3) Thin nonlinear zone below the lithosphere also acceptable

• Uplift Rate: future constraint

• Horizontal velocity: NLLM preferred?

• Rate of change of Absolute Gravity:NLLM acceptable

• J2-dot: NLLM acceptable
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Future Work

• For Surface Motion & Gravity, include:

    a) Spherical Self-Gravitating Earth

    b) Self-Gravitating sealevels

    c) Compressibility

•  For J2-dot , include :

    a) Self-Gravitating sealevels

    b) Compressibility

    c) Recent melting events

END


