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0.1 Linearized differential equations for deformations

0.1.1 General setting of the model

The linearized differential equation system for the tidefiadmationu and the incremental potentialis given by

ot = p{Vo+ (u-V)V(® +7T) -2Q x u} +
V(u-VP)— (V-u)VP - (u-V)VP+ V-0, )

V2p = 471G V- (pu) ,

wherep = p(r) denotes the densit is the (negative) gravitational potential

/7
o(r) ¥ / ol ), &3 @)
ylr—rl
with gravitational constan®,
W(r) L@ (9 )?) = S P €

with Q = |2], r = |r| denotes the (negative) rotational potential for anguléaity vector 2, P the hydrostatic pressure anadis the
incremental pseudo-stress tensor with components

iy = A&kukc&j + u(&-uj + 8JUZ) , (4)

when the material is assumed to be isotropic. Herndy denote the Lamé parameters.

Since in hydrostatic equilibrium the pressurenust satisfy
VP =pV(®+7), (5)
it follows Vp x V(® + ¥) = 0 and the first equation (1) may be simplified to give

pii = p{V(p+u -V(@®+ D)= (V-u)V(@+ V) —2Qxa}+ V-0 . (6)

Equation system (6) has to be suplemented by interior bayrodeaditions

n-o]t =0, (0.7a)
[u]t = 0 ifwelded

o : (0.7h)

[n-u]t = 0 iffrictionless
[ " =0, (0.7¢)
[n- (Ve —4rGpu)]t =0, (0.7d)

and surface boundary conditions

n-a|_ =F, (0.83)
ol_ =9, , (0.8b)
n- (Vo —4nGpu)|_ = n-ch‘++47rGT , (0.8¢c)

wheren denotes the exterior normal to the bounddryis the external force per area acting on the surface;/aisdhe surface mass
density. If one is studying body tides, one s= 0 andr = 0. However, for loading tide#’ andr are the sources, which generate
the tides.

The last equation in (1) together with the boundary cond#i0.8b) and (0.8c) may be solved by the methods of potehgalry to

give
- [V eru) 5, (") + p(r") (u(r’) - n) o s e,
o) = —G [ T D gy g6 | TR e 1 () ©

wherep® denotes the tide generating primary potential which is ¢taad satisfies the Laplace equatiéhy” = 0 inside and at the
surface of the earth.



0.1.2 First order differential equation system

We take the undisturbed system to be spherically symmettie f(r)) and non-rotating. Then equation (1) simplifies further to

pi =p{V[p—g(u-e)+9g(V-ule,} +V- o,

10
V2p = 47G V- (pu) , (10)

whereg = —d®/dr is the absolut value of the gravitational acceleration. &igum (9) may be evaluated for the spherically symmetric
case. Itis, however, more convenient to integrate the wiiiffierential equation system (10) directly without makimge of (9). This
system allows for two types of solutions, toroidal and sphial solutions. The toroidal solutions ob®¢ v = V- (pu) = 0 and are
obtained from the ansatz
u = Wy(r)e, x V1Yo (9, x) exp(iwt) ,
. (11)
Y=Y,

where we have agreed to Sé{ et r[V — e, (e, - V)] andY,,,, (9, x) is the spherical harmonic of degreeand ordern given by

Yo (9, ) = |/ 2 (s P (cos 9) X

47 (n+m)!
Yo—m@,x) = (=1)"Y, (9, x) , with (12)
—cos2 9)m/2 n—+m n
P (cosd) = (—1)m 4 e :j!) d(ciﬂ) i (cos? 9 — 1)

For this ansatz we have

V.o = {% {u <Wé(7’) - %Wn(r)ﬂ

L <3W’(r)— 1+n(n+1)

" Wn(r)> } e, X V1Y, (9, x) exp(iwt) (13)

with W/ (r) e aw, (r)/dr. Introducing the “solution vector”

def o W,
7 S g ) 4o

equation (10) for toroidal solutions reads

d
rt = Aryr (15)
r
where the matriXA + is defined as

3 n+1

o 2 "
Ar = <(n—1)(n+2)u—pw2r2 _3 ) : (16)

n+1 2

Spheroidal solutions are obtained from the ansatz
u = {Hp(r)e; + Tn(r)Vi}Yom (9, x) exp(iwt) , 17)
¢ = R (r)Yom (9, X) exp(iwt)

and yuield

V. .o=
di {/\ <H,’l(r) + %Hn(r) -

_@ (Té( ) — —T (r)+ ~H )}e m (U, X) exp(iwt) +

{2 (o + 2,00 - (”“)Tn( >)+d 1 (1) = 210+ 20 |

(n+1)

1,(0)) + 2t (0] + 2 (1200 - 210,00

r
1+2n(n+1)
r

+g <3T,g(r) -

For the case > 0 we introduce the “solution vector”

T (r) + ;Hn (T)) } V1Yom (9, x) exp(iwt) . (18)

Hy
[N+ 2p)rH, +2XHy)/(n+ 1) — nATy

def nTy
yS - \/; M(TT’IIL _ Tn + Hn) (19)

n
rR), + (n+ 1)R, — 4nGprH,



and arive at an equation

dys
r—— = Agys (20)
dr
with a matri}
—32+2u n+1 (n+1)X 0 0 0
2(A+2p) - A+2u0 A2u0
4p(3A+2p) 4pgr+ 3A—2 20 (3A+241) —pr
(CES eI pgrnff - 2(>\+2Z) PIT T T XFom n pr nﬁ
_ 0 3 n 0 0
Ag = 2 7(L3A+2 ) (n+DX 4dp(nt+) A+ )2 2u+pw?r? ug (21)
1 14 —(n p(n 14 wr 3
pgT — A 20 20 A 20 - = l:’L ) —-pT 0
ArGpr 0 0 0 —(n+3) 1
4rGp(n + 1)r 0 —47Gp(n + 1)r 0 0 n+ %

These equations have first been given by Wig@inkorn = 0 the termT, VYo is identical zero and the incremental poteniak
equal to the primary potential” outside the earth andy = 47Gpu + const. inside the earth since it must be singularity free there.
We may therefore introduce the simplified “solution vector”

def rHo
Yo = | VFIA+2pm)rH) +2)3Ho] | , (22)
Ro
which yields the equation
d
r=% = Aoy (23)
T
with
—3242u 1 0
A2 )2(/\+2u) 3/\;2;
Ao = | 5 —dpgr — pw?r® 555505 0 | - (24)
A7 Gp\/r 0 0

The case of a liquid layer has to be considered sepefafety a liquid compressible layer the Adams-Williamson dtad

dp 29 _
dr+p A

must be satisfied in a state of thermodynamic equilibriunmc&iforp = 0 the Lamé parameter is identical with the compression
modulus which in turn is nothing else but the adiabatic caagibility

oP
=05, 29

where the subscripi denotes constancy of entropy, (25) may be derived from theharécal equilibrium condition (5) for the static
pressureP by the assumption that density variations in the liquid fegre isentropic.

0 (25)

For i = 0 ther-component of the first equation (10) together with the angiak) yields

r

& (s 2w, - g ) 27)

d 2 1
—pw?H, = pg(Rn —gH,) + pg {H,’l + ;Hn - MTn} +

while thed- or y-components of the first equation (10) yield

—pw?rT, = p(Ry, — gHy) + A {H; + %Hn - MTn} . (28)

r

By differentiating this equation with respectitpaddingpg /X times this equation, substitutinlyp/dr from equation (25) and substract-
ing equation (27) we obtain

T, = o 1o (29)
r
With the ansatz (17) and the “solution vector”
4nGprHy
YL =7 e : (30)

rR), + (n+ 1)Ryn — 4vGprHy,

1The matricesAg and A, given here are thén + 1)-fold of the matricesA andB respectively given in Appendix A ¢ corrected for a mistake made thereﬁml.
°Here, a layer is meant to be liquid if the shear stress vasighe= 0) throughout the layer. This is not fully equivalent to a lididescribed by hydrodynamic
equations since the deformationswvere still supposed to remain small for all times.



we then get the equation

dyL

Ty = ALYL (31)
'S
with a matrix
1 A 1 pw?r? —4xGp3r? 0
2 Tap\n +1- ni ni
_n_ 1
A = | 4Gp 2 0 0 (32)
0 — (n + %) n
n+1  —4xGp(n+1) 0 n+ i

However, forn = 0 this ansatz does not work. In this case we have to take théza(22) and get the equation (23) for the liquid layer

as well.

The boundary conditions (0.7) for a frictionless boundarinzen a solid and a liquid layer may be given explicitly dofes:

1

YS1 = ZxGprr YL1
2

g pPLWT PLT
Ys2 = ma(nrn) YLl — n(Ln_H)YLQ - n(nL+_1)YL3 >
YS4 0 9 (33)
Yss %YLg )
YSe = YLy -

0.1.3 Energy integrals
Here we shall take the potential energy of a deformation ,asgiven by Pekeris and Jarosch, Jobert Backus Backusitedt@nd

directly in a Ioad will be given also. The work done by the thggment field against pressure and gravity of the undefosystem is

1
P=3

— 5 [ (g9 ) - V (ot )}

whereV denotes the volume of the earth aRds the pressure, the gradient of whichVs® = pV® = —pge, by (5). The energy
stored in the incremental potential is given by

1 1
G = ——/pu*~V<pd3r——/ er*d?r
2 )y 2 Jov

——— | Ve* - Vepdr for loading tides
87TG R3
= ; (35)
3 . * 12 .
~%C / Ve* -Vod?r + — 8:C <per Ve*d“r for body tides

/ u* - {V(u-VP)— (V-u)VP — (u-V)VP + p(u-V)V®} d3r
v

(34)

where the upper line in the second expression is only vahdnbmjing tides because the gradient of the incrementahgiatenly then
decreases sufficiently fast at infinity. This part of the ptitd energy may be further decomposed into two pétts, G* +G5, according
to the decompositiop = ¢ + ¢° of the potential into a primary and secondary one. In thisodgwosition, the primary potentiai®
is due to other celestial bodies or to the masses on the suafatthe secondary potential is due to the mass redistribution within the
earth. These parts of the energy are

1

- = *d%r
2 )?

1
G = —5/ pu* -Vt dr
v

1 . .
[ VY VP &3 — _/ OSrrd?r for loading tides
871G Jire 2 Joy
- G ) 2 | (36)
87rG/V¢ - VP dr+ﬁ cp e, - Ve*d“r for body tides
and
1
gS = ——/ pu* - VS dir
2 Jv
1 . .
—— [ Ve VS dBr+ _/ OSrrd?r for loading tides
B 871G R3 2 Jov (37)

e, - Vp*d?r for body tides

1
d3
87TG/W Ve drrea



The elastic deformation energy is

E=— /u*-(V-a)d?’r—i—l/ u* - (e, o)d*r
v 2 Jov

3
1 2 M 2 3

4,J=1

and the kinetic energy is
K:l/pu*-ud?’r. (39)
2 Jv
Finally, the potential energy of the load lift is
L= g(a)/ (u-e.)T*d?*r (40)
oV
while the kinetic energy of the load is small of third order.

For spherical degreewith the combined ansatz (11) and (17) the integral (34)sceting thej- andy-integration and using Poisson’s
equatiorny’(r) = 4rGp(r) — 2¢9(r)/r, evaluated to

Pu=3 | {umGotryr — g 1,00
+n(n+1)g(r) [Hy(r) Tn(r) + Ha(r) T (r)"] }p(r)rdr : (41)
whereas, with the ansatz .
tpP =Cp (2) Yom (9, x) exp(iwt) . (42)
for body tides and
4rGa

r\"m
Tam | =) Yam(9, x) exp(iwt) for r<a
i ()
=90 . (43)

4 n+1
%ﬁ—falmm (%) Yom (9, x) exp(iwt) for r>a

for loading tides, the energy is evaluated from (35) to

Gn = ——/ {rHn(r)" By, (r) + n(n + )T (r)" Ry (r)} p(r)rdr — —a “Ru ()T,
- SWG{/O [ R, (1] + n(n + 1| Ra(r)?] dr
+aly()](n + 1) R (a) — (20 +1)Cp]"} (44)

where, for loading tideg;’» = 0 is meant. The primary and secondary part of the this eneryy ar

r

_nCe / (Ho (1) + (n+ )T (r)*} (5)" p(r)rdr

=—(2n+ 1)ﬁ [Ry(a) — Cp]” for body tides
8rG
G, = (45)
2rGantum ey [T\ a? .
1 + i / {H,(r (n+ 1T, (r)*} (5) p(r)yrdr — ?Rn(a)Tnm

5 for loading tides

=__ [TnmRn(a)* + 75 Rn(a) — ArGa }

2
2n +1| T



and

—% /O {Hn(r)* [TR;(T) —nCp (g)"}

+n(n+ 1)Th(r)* [Rn(r) - Cp (g)n} } p(r)rdr

“gal [ e e e ()]
+n(n+ 1R, (r)* {Rn(r) - Cp (2) ] } dr

+a[(n + 1)Ry(a) — (2n + 1)Cp]*[Rn(a) — Cp]} for body tides

Gy = _%/0 {Hn(r)* [TR;(T) - %Tnm (2)"} (46)
+n(n+ 1)Ta(r)* [Rn(r) - ;‘;—f“lrnm (2)"} } p(r)rdr

_ _#{/0 {TR;(T)* [TR;(T) - G e (5) }
+n(n+ 1) Ro(r)’ {Rn(r) dnGa (f)"”dr

o + 1Tnm a
[(2n 4+ 1)R,(a) — 4A7GaTnm)

3

n+1
X [(n + 1)Ry(a) — 41Gatnm)” } for loading tides

respectively. From the ansatz (11) and (17) with (13) and &l the boundary condition (0.8a) the elastic deformagioargy is
evaluated as

Eu=x /0 (M) I (1) + 2H, () = nln + DT (1)
+(r) [ 202 [ ()] + 4| Ha (0] = 2n(n+ 1) (Ha (1) Tu(r) + Ha(r)Ta(r)")
+n(n+ 1) [FT(r) = Tu(r) + Ha(r)]* + 2n(n + 1)(n? + n — 1)|T,(r))?
n(n+ 1) [PWo (1) = Wa )l +n(n+ 1) +2)(n = DIWL ()] par, (47)

where the surface integrajs,., ..., and(,., over the external force per area acting on the surface werainced in order to express
the boundary term and are defined below (p. 9, equation (0.{@.&1b) and (0.71c)). The kinetic energy obtains theealu

w2 ¢
o= L [0 + nto+ 0 [I1,607 + )] b ptryrar 8)

and at last, the load-lift energy is
L, = a*gla)H,(a)T},, . (49)

nm

The total inner potential energy of the mass redistributiithin the earth then is
{P+G5+ &} cos®(w(t —to)) (50)

for a real time periodic deformation with circle frequengwnd phase..

0.1.4 A special property of the differential equation systm

The differential equation systems (15), (20), (23) and (3dye an important property related to the formal self adjmas of the
differential equation (10) which has been first pointed guMwlodenskiy? for a slightly transformed equation system equivalent to
(20). In the present formulation this property manifeslitby the similarity of the matrices in question with theggative transposed
matrices:
~ArT = CrArCrT!, (0.51a)
—AgT = CgAsCs7! (0.51b)
—ALT = CLALCL_l . (051C)



The similarity transform is explicitly given by the matrie

cr— (Y71 (0.52a)
T — 10 ) .
0 —4nGn(n + 1) 0 0 00
4rGn(n + 1) 0 0 0 00
Ce — 0 0 0 —47Gn(n+1) 0 0 (0.52b)
5= 0 0 AnGn(n + 1) 0 oo |’ '
0 0 0 0 0 —n
0 0 0 0 n 0
0 w21 0
—w?2 000
Cy = . 0.52c
b -1 00-1 (0.52¢)
0O 010

For A there does not exist such an equation with a constant n@usinmatrixCy, but we have

—AyTCy=CpA, (53)
with a matrix
0-10
Co=|100]. (54)
000

Of course, these matrices are only determined up to a cdmatgrix factor commuting with the matriAr, Ag, AL, Ay respectively.
These factors have been choosen such that the equality

xs" Csys = x1,” Cry1, (55)

holds by (33) at the boundary between a liquid and a solidrlaye

By differentiating such scalar products and applying (12R), (31) it may be concluded from (0.51a) to (0.51c) thasthscalar
products must be constant. Due to the continuity (55) adtes$¥oundary, the constant must be the same in all layerangakly
solutionsx andy which go to zero at the center of the earth, we therefore have

xr ' Cryr =0, x5’ Csys=x,"Cryr =0. (56)

From these equations there may be derived linear relatietvgden Love and Shida numbers (see below, section 0.2.2).

0.1.5 Solutions for a homogeneous sphere

Solutions of the differential equation systems considémexction 0.1.2 in general diverge at the center of the edittkerefore, these
systems are numerically untractable there. To overconsedifficulty, a small sphere at the center of the earth may kentéo be
homogeneous. For this homogeneous sphere the finite swudfdhe differential equation systems shall be derivedyéinally. For a
homogeneous sphere we have constant valugs)ofindy and

47
g= ?Gpr . (57)

The toroidal solutions may be given directly in terms of spda Bessel functiong,, of the first kind (cf.?, p. 437):

n (\/gwr)
1(r) = CtV/r v p ] b -
R PR

Wi (r) = Crjn (\/gwr) . (59)

However, if the core-mantle boundary is supposed to badritdss — and no other assumption is consistent with vamijsélear stress
in the liquid core — the numerical integration has to be sth#t this boundary with the initial value

yo© = (C%) . (60)

or

0



In order to derive spheroidal solutions for> 0 we decompos@ s with g replaced by the expression (57) into

As =AY + A +2AY) (61)
where 3742 (n+1)X
2_@5;5 AnJ:r;u A 2p 0 0 0
4p(32+2p) 3\—2u —2p(3X+2p) n 0 0
(n+1)(A+2p) 2(A+2u) /\+32u
) _ -n 0 5 n 0 0
AS - —2p(3A+21) —(n+DX 4p(n+1)(A+p)  2u _#3 0 0 ’ (0.62a)
A 20 A2 A2 n 2
0 0 0 0 —(n+3) 1
0 0 0 0 n+3
0 0 0 00 0
0 0 0 0 p —t5
@ _ 0 0 0 00 0
Ay’ = 0 0 0 0—p 0 , (0.62b)
4nGp 0 0 00 O
d7Gp(n+1) 0 —47nGp(n+1)0 0 O
0 0 0 000
167G p*+3pw? n
AP — 0 0 0 000 (0.620)
LZGp 0 —22 000
0 0O 0 000
0 0O 0 000
are constant with respect to Then six linear independent solutions of (20) may be giveseaies
ysO(r) =r Y rhi (63)
k=0
whereq; are the eigenvalues diéo) —a; =n—-1/2,ac =n+1/2, a3 =n+3/2,as = —(n —1/2), a5 = —(n +1/2),
ag = —(n + 3/2) —and the vectorbgk) must satisfy
{(ai + &)1 - AP = APDBE Y 4 AP B (64)
with bgj) = 0for j < 0. Only the first three solutions are finite at the center of tx¢he their coefficients explicitly read
n 0
2n7(li711) 8
(0) _ n 1 _ (k) _ >
b; on— 1 | b; 0 , by 0 for k>2 (0.65a)
0 ZGpn — w?
0 & Gpn(n—1) — (2n+ 1w’
fora; =n—1/2and
0 0
0 —A
b® — 0 INCH np 1
2 o |7 7 Tt D) 2| v |
1 0 (0.65b)
2n+1 0

-1
bl = [(n+k+3)1-Aa0] {ALBY Y+ APBE ] or k> 2



foras =n+1/2and
(n+ )[R+ p) —24]
2u[n(n — 1)(A+ p) — (3A +2p)]
O — |l DA+ p) +2(3 + 2u)]
3 2ul(n+ 1A +p) —(A+2w)] |’
0
0

(0.65¢)

bél) = —4rGp(n +1)

T ooo o

w

[n(A+3p) + 4

-1
b = [(n+h+3)1-Aa0] {AUBIY 4 APBE ] or k2

foras =n+3/2.

In the caser = 0 the finite solution may again be given explicitely in termgtod spherical Bessel functiorisandj, of the first kind:

Vrji(kr)
yo = Cs | V7 {(A+2p)rrji(kr) — 2Xj1(kr)} (66)
ATEL(1 — jo (k)]
> Ho(r) = Cja (sr)
o\7) = LgJ1(RT
Ry(r) = 4”—5’905[1 — jo(kr)] ©7
with

167Gp? 4+ 3w?p
=) " 68
" ' 3(A+2p) (68)

In the case of a liquid the Adams-Williamson condition (25phly consistent with homogeneity if the liquid is incomgsible, i.e. if
A = oo. Under this circumstances there are two linear indeperfitétat solutions, which can be expressed by a powet. of

47Gp 0
n 1 n 0
Oy =2 [ Ly @ =z )] (69)
—4nGp 2n+1

The general finite solution then reads
H,(r) = Cﬁl)nrn_l ,
To(r) = CLrn ! (0.70a)

0.2 Body tides and surface load

0.2.1 Spherical harmonic expansion of surface loads

As the first order differential equation system has been m@osed into toroidal and speroidal harmonic parts by (14) (47) the
external surface forc&' and the surface mass densithave to be expanded likewise. Since the spherical harm@ti?onstitute an
orthonormal system, this is easily accomplished by surii@egration. For a periodic loall' = F° exp(iwt), 7 = 7° exp(iwt) with
circle frequency we set

. pTop2T
mon™ [ 2 0,0Y, 00 sin(0) dad (0.713)
0 JO
0 def_il/ﬂ/% D lsin(@)FS (0, 3)] + L F2(0,3) b v (9, x) dxdw (0.71b)
" a4+ 1) Jo Jo 99" oA X ox X P X [ Fnm T X)EXCET '

det 1 L R d .. o .
Cnm = m /0 /0 {8_XF19 (07 X) - %[Sln(ﬁ)FX (19’ X)]} Ynm (19’ X) dXdﬁ (071C)



and )
Tom & / / 70, X)Y,5, (9, x) sin(9) dydv . (0.71d)
0
The definitions (0.71b) and (0.71c) amount to decomposedheadntal component of the ford® into spheroidal harmonic pargs,,,
and toroidal harmonic parts,,,,.

For the combined ansatz (11) and (17) the incremental psstiess tensor components are related to the componertits sblution
vectors (14) and (19) as follows:

Opry = ?@t% nm(ﬁ X) eXp(ZWt) ¥s,2

_ 0] 0 nin ,
m {8’[9 [Sln(ﬁ)UTﬁ] + aarx} = (Tsj_zl) Yy (07 X) exp(zwt) ¥s,4

(72)
. ga 0 [sin(9)ory] ¢ = )’y m (9, x) exp(iwt)
sin(9) 8X rd T 819 X — T r3/2 » X p yr,2 -
From these relations we conclude that the surface boundadition (0.8a) becomes
a3/2
vsa|,_, o = s (0.73a)
ysa|,_y o = 0% 0nm , (0.73b)
a3/2
Y12l Com - (0.73c)

r=a—0 n-+1 nm

In order to evaluate the surface boundary condition (0M8b);emark thap satisfying the Laplace equation outside the earth must have
the formyp oc =" +t1Y,,,. (9, x) if it is to vanish at infinity, i.e. no primary potential fronosrces outside the earth is present, and that
¢ is continuous through the surface. Therefgte/0r]; = —(n + 1)[p/r]— and equation (0.8b) may be transformed to

vs.6|,_y_o = 47Ga® P 1y . (0.73d)

If the vertical component of the external surface force iglgadue to the material on the surface which must have theeszsrtical
velocity @, as the surface themselves, the relation

Nnm = —9(@)Tnm (74)
must be satisfied. This is so because the vertical accelrtigtitimes the surface mass densitys small of second order and must be
neglected in the linearized theory studied here.

0.2.2 Love-Shida numbers for body tides and surface load

The Love numbers,,, k,, and the Shida numbéy, are defined to be the appropriately normalized dimensiemeswer of the system to
a primary excitation potential of equation (42)The incremental potential thengs= ' +° with ¢S = Cg (%)"Jrl Youm (9, x) exp(iwt)
outside the earth. We then haf,(a) = Cp + Cs and, according to the boundary condition (0.8aR,,(a) — 47Gp(a)aH, (a) =
nCp — (n + 1)Cs. Thereforeysg(a) = (2n + 1)y/a Cp. Now the Love-Shida numbers are defined as

) = L g 1)g00) 2220 ©0.752
folr) = L0 _ Bty [L¥sst) 0.750)
putr) = 22— (2)" = n g [0 ()" 0759

for a solutionys with ys,(a) = ys4(a) = 0 because of the boundary condition (0.8a) whth= 0. At the surface these numbers have
the values

@), ysi(a)

he = £EGES = @n D@ TS (0.76a)
l = g(a)g;jl(“) = ola) :EZ; , (0.76b)
by = Ty g )Y@ g (0.76¢)
" Cp yse(a)



There are also defined three load fact®?® for a surface mass load witfy,,, = —g(a)7nm andb,,, = ¢um = 0:

2n + 1)g(a) Hy(r) \ﬁ ysi(r)

B (r) = ( = (2n+1 Z221 0.77
W) = S T = e Dgle) IR (0.773)
2n+ 1)g(a) T, (r) 2n+1 ayss(r)

o = _ ayss 0.77b
W) = T e = e[S (0.77b)
2n+1 R,(r) T\ ™ ayss(r) T\
k! = — (=) =Cn+1)/- —(=) . 0.77
n(r) ArGa  Tum (a) (2n + )\/;ySG(a) (a) ( ©)
Here, the solutiorys must satisfyys,(a) = —%y%(a) andys,(a) = 0 because of the boundary conditions (0.73a), (0.73d)
and (0.73b). At the surface these factors become
;2041 Hn(a) _ ysi(a)
hl, = a3 M = (2n + 1)g(a)y56(a) , (0.78a)
0 = 2n +1 MTn(a) _ 2n+1g(a)ys3(a) ’ (0.78b)
4ra? Trm n vse(a)
2n+1 Ry(a) yss(a)
kK = -1 =02n+1 -1 0.78
" AnGa Tam (2n + )YSG( ) ’ ( 9
whereM is the mass of the earth.
A unit point mass located at colatitude and longitudey, has sherical harmonic expansion
50, x[0o, x0) = D> Y Yam(W, )Y, (Do, Xo) - (79)

n=0m=-—n

If the unit point mass is located at the north pole, which ause of spherical symmetry, might be achieved by taking tloedinate
system appropriate, the double sum may be reduced to a simgi®ver Legendre polynomials

> on+1
A

6(¢, x|0) = P, (cos¥) . (80)

n=0

The system therefore reacts on a lodd, y) = 2 5(¥, x|0) exp(iwt), which givesr,,, = &% /2215, with elongations

a2

ur(a, 9, x) _ Moa Z h!, P, (cos V) exp(iwt) , (0.81a)

Ma

ug(a,?, x) Z En 319 (cos ) exp(iwt) , (0.81b)

uy(a, 9, x) = 0 and incremental potential at the undlsturbed surface

MG <> (k! 4+ 1) P, (cos ) exp(iwt) . (82)

n=0

©(a,9,x) =

For tangential forces there might be defined four more diiatess coefficients, three for spheroidal forci2igy

2n+1 g(a)® Hp(r) 2n+1 g(a)? \/Eysl(r)
) — _ a 0.83
n(r) nn+1) 4vGa Opm n(n+1) 47G \ rysy(a)’ (0.83a)

)
2n+1) g(a)® To(r) _ 2n+1 g(a)® \/EYSP,(T)
)

0(r) = = 0.83b
n(r) n(n+1) 4rGa O, n?(n+1) 47G \ rys,(a)’ ( )
2n+1 g(a) Ru(r) 2n+1 g(a) \/Ey55(r)
) — _ a 0.83
n(r) n(n+1) 4rGa O, n(n+1) 47G \ rys.(a)’ (0.83¢)

for a solutionyg with ys,(a) = ysg(a) = 0 because of (0.73a) and (0.73d). At the surface these ceefficiead

n - 2n+1 GM? H,(a) _ 2n+1 Mg(a) ysq(a) 7 (0.84a)
n(n+1) 4ra®  Opm n(n+1) 4ra® ysy(a)

2
g 2ntl GMXTaf@) 2041 Mg(a) yssla) o)
n(n+1) 4ra® Oum n?(n+1) 4ma? ysy(a)
2n+1 M Ry(a) 2n+1 M yss(a)
/- — 2 . 0.84
" nn+1) 4dra® Opm n(n+1) 4ra? ys,(a) (0.84c)




Finally, there is one coefficient for toroidal forciffg

ga)? Wi(r)  g(a)? ayr,(r)
1) = Ga Com TG D) \/;ym(aw (85)

which at the surface has the value

_ GM? Wy(a)  Mg(a) yr,(a)
fr=—— = 5 : (86)
dma Cnm 47T(TL + 1)0’ YTo (a’)
The nine coefficients for spheroidal forcing are not indefgam. Applying equation (56) to any pair of the three solusio
h h/ h//
—(2n+1)Mg
2 47r(nz-ll)a2 2//
Ntp ne, ney
Y= O ) y/ = 0 9 yH = (2n+l)Mg ) (87)
4mn(n+1)a?
(1+kn)g (1+k,)g kg
(2n+1)g (2n+1)g 0
given at the surface of the earth, the three linear relations
k. = ky — ha, (0.88a)
K =4, (0.88Db)
e A (0.88c)
valid at the surface may be derived
Furthermore, evaluating equation (9), there may be detivedbllowing integral relations for the Love-Shida numder
4rGn r\ntl
(@) = G e / ) + (ot D) (5) plryar (0.89a)
4rGn ry\ntl
’ ’ / -
K@) = Grt Do / (R, (r) + (n+ 1)€, (r)} (a) p(r)dr (0.89b)
47Gn 7\l
" " " -
R / ) + o+ 0 () plrar (0.890)

0.2.3 Dimensionless representation of energy integrals

The energy integrals of section 0.1.3 may also be expresgadlg in terms of Love-Shida numbers. In order to do so, Wwease the
dimensionless normalizations

= def 4nG p def drG  p s def drG g
nEAGE T I T a9 T g
= det 4nG _  gef 4mG
n = n n = 90
alCeP? a[Crl? 0
for body tides,
=, def 2n +1 —p/ def 2n+1 p =g/ def 2n+1 g
Pn = A7 Gad|Trm|? Pos Gn = A7 Gad|Tym|? Gno Gn = A7 Ga?|Tm |2 G -
=/ def 2n+1 =, def 2n+1 =, def 2n+1
g LT e KLY 2T x,, LY, 91
" InGad|Tpm|? " " A7 Gad|Tym|? ’ " A7 Gad|Tym|? (1)
in the case of loading tides,
g nt %@ o @nt 1@
" AnGa3n2(n 4+ 1)2|0,m |2 " AnGa3n2(n 4+ 1)2|0p,|2 T
2.0 1\2 \ 2002
g def (2n+1)%g(a) g, K def (2n+1)%g(a) K, (92)
ArGa3n?(n + 1)2|0pm|? ArGa3n?(n + 1)2|0pm|?
for spheroidal surface forces and
2 2
E (t) dEf g(CL) gn ’ E(t) dZEf g(CL) ’Cn (93)

drGadn(n+ 1)(2,, " drGadn(n+1)(2,,



in the case of toroidal surface forces. Then, with the dédim

det 47Ga _ det g(za)

pla) & relwa) s gl@) ¥ TS
A def ﬁ xa [ x def AnG xa
)\(1’) - g(CL)Q/\( ) ’ M( ) g(a)QM( ) ’

the energy integrals (41) and (44) to (47) for body tides tipenforming some partial integrations, read

Po=3 | {@@ - sg@in @)

#n(n+ 1)g(@) [ (@) 0o (@) + ha(@)a(2)"] Jplw)da

1

GS = —% /01 {xhn(:zr)* dkgf) fnn+ l)én(x)*kn(a:)} p(z)zdz
! (/{} b () |
2\ Jo dz

g *l ' _I dh() —nn X
E,= /0{)\()‘ o + 2hp(x) — n(n + 1), (x)

+n(n+ 1)|kn(a:)|2} dz + (n + 1)|kn(1)|2> ,

2 2

dh., ()
dz

+ i(x) [z ‘x

4 ()| — 20(n + 1) [hn(x)*én(x) + hn(x)zn(x)*}

e, (x)
dzx

2

+n(n+ I)Hx — () + b ()

+2(n* +n— 1)|€n(x)|2H } dz |

1 2
Kn a|w| / {|hn(@)? + n(n + 1)l (2)[*} plz)z*da .

For loading tides one accordingly has

— 1

1
Pr=g [ {(ente) = sg@)in @

n(n -+ 1)g(@) [0, (2)" 0, + 1, (@)0, (2)"] }

np(x)xnt?

S p/ 1 ! / * ! * !

= 5 )+ K, )7+ 1)
?2’_—%/0 {xh;(x)*dkéf) +n(n+ 1)l (2)* K, ( )} ’_’ﬁﬁdx

2
+n(n+ 1>|k;<x>|2}dx

__m(/ol{‘xdkéf)z

—(n+ l)lk;(l)l2> ,

(0.94a)

(0.94b)

(0.95a)

(0.95b)

(0.95¢)

(0.95d)

(0.95¢)

(0.96a)

(0.96b)

(0.96¢)



2

s 1 " dh/( ) ’ /

’ 2
\ @) |y ()2

+i(x) lQ x

_2n(n+1>[ (@) 0 ( )+h;(:c)€;(:c)*}

2

!/
+n(n+1) [ ’xM — 0 () + R, (x)
dz
+2(n* +n — 1)|€;1($)|2H } dz , (0.96d)
Kl = 1 alp /1 {|h(@)]? + n(n + 1)|€,(2)]*} p(z)z*d (0.96€)
"22n+1) gla) Jo " " '
and in this case there is an aditional load-lift energy (4Bicly may be given in the dimensionless form (91) as
L = h(1). (0.96f)
For spheroidal surface forces the dimensionless energgrials may be evaluated as
_ 1 [t
P3| {ote) - dgpin; P
0
nln+ 1)g(@) (W ()"0 + (@) 0 (2)"] }ale)ede (0.97a)
/I
1 k” " 2 " 2
—3 / +n(n+ DIkI(2)|? pdz+ (n+ 1)k, (1)]7 ], (0.97h)
" 2 7 2
-5/ { V) 4 o) — i+ V)| + ) [2 o2l
2 dz
FAR (@) = 2n(n -+ 1) (2) (@) + B (@) ()]
1" 2
+n(n+1) { ’xdﬁn(:zr) — 0 (x) + Rkl (x)
dx
+2(n? +n — 1)|e;;(x)|2” } dr | (0.97¢)
2
Ki=3 M"*" / {|n2(2)]? + n(n + 1)1 ()} plz)adx (0.97d)
and for toroidal surface forces one has
_ 1 [t dfn 2
03 [ ) {\ D @] + 0+ 200 1)|fn(w)l2} i, (0.982)
2 0 dI
_ Lalw|? [* _
KO == / (@) ()2 da 0.98b
3t ), 1a@)Pa@) (0.98)

0.2.4 Love-Shida numbers in case of a fluid surface

In the case of a fluid surface the shear stress vanishes Wvergherefore, have only body tide and load Love-Shida numb@oeffi-
cients for tangential forces, on the other hand, do not eXts¢ boundary conditions (0.8) in this case amount for

47rGayLl‘r a— 0__yL2”I" a— O__yL3’r a—0 \/—7777,17’7,7 (099&)



Yial,_, o = 4Ga* > 7 + (20 +1)y/aCp . (0.99b)

From this and the definitions (0.76) and (0.78) we derive tfiewing form of the two linear independent solution vestat the surface:

47eraiL 4rGpa iL/
g 3/2 ; Z/ "
Ind 47Ga Zn
=+vaC 9" , = ———Thm 9 100
y=valr n(1+ kn) TR n(l+ky,) oo
2n+1 2n + 1
where the tilde denotes the fluid case of Love-Shida numbBéesboundary condition (0.99a) then yields the relations
~ aw2 ~ ~
hy — ——ly —kyp =1, (0.1014a)
g(a)
hl — “—“’2@’ —k =1-2n+ 1)ﬂ (0.101b)
" gla) 4nGpla)a '
Applying equation (56) to the two solutions (100) we aganivarat equation (0.88a) now for the fluid Love numbers
K =ky—hy, . (102)

0.2.5 The special case = 1

In the case of harmonic degree= 1 there is a special exact solution corrsponding to rigiddiaions of the earth as a whole. This
translationary exact solution is given by the spheroidaltsmn vector

1

0

1
YStrans = \/77 0 . (103)
g(r) —w?r
—3w?r

With aid of the Poisson equationy’(r) + 2¢g(r) = 4xGpr it may be checked that (103) indeed satisfies equation (2@weMer,
this solution is physically meaningless for## 0 because the inertia forces for this motion were suppliedrbgdditional potential
© = —wrYi, (9, x) exp(iwt) for which there is no physical reason in an inertial systena liquid layer this solution has continuation

ArGp(r)r
Yitrans = V7| 000Dz | (104)

g(r) —w'r
—3w?r

which satisfies (31). If this solution is multiplied by thenstant— ng it has the form of the vectgyr in (87) at the surface of the earth
and therefore satisfies the surface boundary conditioneay tides. From this we may conclude

ha(r) = —% ; (0.105a)
b(r) = —% ; (0.105b)
ki(r) = —Z(—Q . (0.105c¢)

From equations (0.88a) and (0.88b) we further conclude that

K, =0, (0.106a)

Ky = -2 (0.106b)
aw

must hold at the surface of the earth as well.

Up to now we have done all calculations in an inertial systelmwever, for body tides, it is customary to give the Loveddmumbers
in the center of mass system. If we transform to a coordinetiem the origin of which moves by a vector

s(t) = so exp(iwt)(e, + V1)Yim (9, X) , (107)



the displacements and the incremental field transform to

H{"™(r) = Hy(r) = 5o, (0.108a)
T (r) = Ty(r) = so , (0.108b)
R™(r) = Ry(r) — so(g(r) — rw?) (0.108¢)

while the toroidal displacemeft is not affected.

The solutionys,, ... Satisfies the boundary conditions for body tides and, tbeeebody tides of harmonic degree= 1 have constant
displacement coefficientd(r) = Hi(a) = T1(r) = Ti(a). Hence the center of mass in the case of body tides is givehdy t
coefficients, = H;. With the above transformation the body tide Love-Shida bera in the center of mass system then become

W) =0, (0.109a)
KMy =0, (0.109Db)
B (r) = - (0.109c¢)

For loading tides, the center of mass of the earth togethtr the loading masses does not move because of conservétioear
momentum. The same is true for tangential forcing if the ésrare exerted for instance by winds or ocean currents anairtiaad
water masses are included in the definition of the center abmBo do so is convenient since e.g. the motion of a satelitehamight
be used to measure the Love-Shida numbers does not seperaéeh the mass of the earth and the loading masses on the eart

0.2.6 Asymptotic solutions for large harmonic degrees

Since meteorological as well as — due to topography — oceamiteven glacial loads have considerable components wijle la
harmonic degrees in there expansion, for which numeridatisos become unstable, there is need for asymptotic isolsiof the
differential equations (15) and (20) for large

For largen the differential equation systems (15) and (20) show twaegarfeatures. Firstly the solutions which are finite at thigio
decay roughly aér/a)™ with increasing deepness under the surface @) and secondly their eigenfrequencies behave asymptetical
proportional ton. For this reason we make the transformation

rzaexp( i ) (110)

n+1

. w [ &u(a)
nh—>Holo n+1  \la2p(a) (111)

That is to say, we s&t= 0 when tides generated by external forces with certain pegod studied. However, when eigenmodes of the
system are studied,# 0 is the quantity to be determined.

and define

With aid of the definitions (110) and (111) the linear diffiefial egaution system (20) for spheroidal modes for largsymptotically
becomes

dys 1
—2 = Ag O—— 112
dz 8,00¥s + (n + 1) ( )
with a constant Matrix ) \
0 Ton S 0 00
—&u 0 0 1 00
A -1 0 0 5 00 (113)
S,00 = -2 Ap(A+p) )
0 A2p i+2;tl —&u0 00
0 0 0 0-10
ol 0 —y 0 01

where\ andy are the surface valueés= A(a), © = u(a) and we have introduced the abbreviation

y def d7Gap(a) . (114)



The matrixAs o, has for§ # 0 eigenvaluesy; =1, ag = /1 — ng =y1-¢ays=—/1—-&as=—,/1— % ag = —
and eigenvectors
1 Su

0 A 20 1
0 (2- &) 2T —€
C; = 0 Co = 1 C3 = 1- 5
1= 2 = 3 =
0 9 — ) 2 _5 1 )
0 2’” \/ 1 0 )\+2M ( 0 )
1 _
~ Y
(115)
£

1 1- )\-ﬁgu 0

—2pv/1—=¢ (€ —2)u 0

—/1-¢ -1 0

Cqy = (2_§)lu ; €5 = o ) Ce = 0

2’” 1- A+2M
0 1
—y O 0
-
The general solution which is finite at the origin with therade
1

Ci iz)ci + 0O 116
)= 300 elesyen +0 (1) (16)

=1

and from the boundary conditions (0.73a), (0.73b) and @.%ath ,,,,, = 0, 0,,,,, = 0, 7., = 0 we conclude that the eigenfrequency
of the spheroidal mode is asymptotically given by the valug satisfying

0 2=9n 2um/1-¢
det [ 0 2uy/1 -S4 (2—&6u | =0. (117)

2u
1 Y -
This is the zero of the cubic equation
€3 —82 4+ 8(3—2w)E—16(1—v) =0 (118)
withv = andO < & < 1. For a proportionv ranging from zero td /2 the valuet for the eigenfrequency varies betweef12622

ando. 763932

For¢ = 0 the eigenvalues of the matriXs ., are+1 but Ag  is no longer diagonalizable. Corresponding to the eigervall there
are two eigenvectors;, c5 and a characteristic vectof satisfyingAg -.c3 = ¢ + ¢ which explicitly read

0 1 =
0 2u 0
o 0 o 1 o w
ci=lgl: © 2 , C3= 277 . (119)
0 9 0
+3
1 - >\+;7 0
With them the general solution finite at the origin is
1
vs(z) = exp(z) {Cic] + [Co + (n + 1)C3z]c; + Cac3} + O < " 1) . (120)

From equation (87) one concludes that for body tides one m&C; = (2n + 1)g, Co = C5 = 0 and, therefore, the asymptotical
values of the body tide Love-Shida numbers for larggre given by

hy=01), £,=0 (1) .k, =0(1). (0.121a)

n

Likewise, for loading tides one ha% = (2n + 1)g{1 — %} Cy=—Cs = Qé’(’%)l" and

Wo=01), €, =0 <1) . K. =0(), (0.121b)

n



(2n41)g>
8rGn(n+1)p

—g? 1 —g2(A+2p) 1 1
B = g . " _ — ) — 0.121
" 47TG(A+M)H+O<”2)  fn ATGu(A + p)n? +O<n3) T O<n2) ’ ( o

For toroidal modes one could use the explicit solution (68)din the asymptotes directly, but it is easier to handie ihe same way
as the case of spheroidal modes using the matrix

and for tangential surface forces one igs= Cy = 0, C5 =

1 0+
Ar o = li At = I 122
R e ) 1z

whereu = p(a). The equation

dyT 1
E—AToo}’T-i‘O(n_Fl) (123)
then yields the asymptotic solution
1 1
yr(r) = C exp(y/1 — z)(ﬂm)—i—(’)(—n_'_l) ) (124)

The boundary condition (0.73c) with,,, = 0 then amounts tq/1 — £ = 0 and hence the eigenfrequency for toroidal modes is up to
leading order asymptotically given by the valtie- 1.

The solution (124) witlf = 0 together with the definition (86) then yuields the asymptdtvalue

g 1
In= g + O (ﬁ) (125)

for the toroidal forcing coefficient.

The case of a fluid surface is treated likewise. Equation if@tpmes

dyL 1
L AL o— 126
dz Looo¥L + (n + 1> ( )
with
0 47Gp 0 0
—1_ 0 00
Apo=| 7O , 127
b 1 0 -11 (127)
1 —47Gp 0 1
where now we have defined )
lim - = 9@¢ (128)
n—oo N a

The matrixAp, - has eigenvalues; = &, = 1, &3 = &4 = —1 and corresponding eigenvectors

0 1 0 1
a- |, ao|mm | 6|0, a-| T (129)
1 9 1 ] 1 ] _1 .
2 1 0 -1
The general solution finite at the origin in this case is
2L 1
yu(z) = ; C; exp(&;z)¢; + O (n n 1) (130)

and equation (0.99a) in conjunction with (128) yields thiied = 1 for the asymptotic behaviour of the eigenfrequency. Coispar
with (100) and (0.99a) shows that we must haVe = /a Cp(n + 1/2 — 2xGpa/g), Co = 4xGpa®/?>Cp /g for body andC; =
47Ga® 1, Co = —47Ga®/?1,,, for loading tides respectively and therefore yields thergsiptic values

hn = O(1) , l, =0 (1) , kn=0 <l> , (0.131a)

n

A C LY TRV +0<1) ,k;=—1+0(1). (0.131b)
n

n
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