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Problem 1: What are key physical constants related to gravitation and the gravity field 
of a planet and how well are these known? 
  The universal gravitational constant (G), the mass of the objects involved in the 
gravity field (mn), and the distance of observation from the center of that object’s mass 
(r), are the physical constants necessary to describe the gravity field of any mass.  This 
force is inversely proportional to r2, making it diminish rapidly with distance from the 
center of mass (CM).  The mass of the earth is well known, but the position of Earth’s 
CM and the value of G are not, and since the Earth is not an ideal ellipsoid, r also is not 
simple to determine. 
 
Problem 2: Name and characterize the main equations related to the gravity potential. 
  Newton’s Law of Gravitation is fundamental to describe a point masses 

gravitational potential, where the force of potential is represented: F=G
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at the acceleration of gravity experienced by one of these masses (typically the lesser 

mass) Newton’s Law becomes: a=g=Gm
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.  Since planetary objects are far more complex 

than a single point mass, the integral form of Newton’s law more accurately calculates 
potential by modeling gravitational potential as a function of position outside the object 
(x) and accounting for many point masses and densities, added together to yield: 
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potential field by Gauss’ Law, derived from Newton’s Law of Gravitation, giving the 

more accurate: g
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orthogonal to the surface enclosing a mass.  Further refinement describes natural 
situations better still, using normal gradient vectors to describe the potential field of 
rotating elliptical objects in both the Laplace and Poisson equations, respectively: 
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coordinates, and expanded to account for density and harmonic free oscillations. 
 



 Problem 3: How large are the deviations of the geoid from the reference ellipsoid and 
how are these deviations explained? 
 The elevation of the geoid and the reference ellipsoid differ by about -110m and 
+85m because of a heterogeneous mass distribution throughout the planet.  This mass 
distribution sets up a resonance on a rotating, wobbling, viscoelastic, ellipsoid; which is 

given by the equation: N = !"
g
T r=a

 which can be expanded to account for density and 

harmonic oscillations in spherical coordinates. 
 
Problem 4: Explain in simple words the origin of tides. 
 Tides are generated by the periodic gravitational pull exerted on the Earth by the 
Moon, Sun, and to a lesser extent the rest of the solar system and extra-solar objects, 
along with the inertia from Earth’s rotation. 
  
Problem 5: Why do we see ocean tides? 
 The oceans are much less viscous, and more responsive to stress than the rigid 
earth, making the tidal bulge more apparent over water than land. Additionally, the 
geoid, atmospheric forces, bathymetry, and thermodynamic forces have an integrated 
effect on the readily deformable oceans, causing regional differences in the apparent 
tides. 
 
Problem 6: Why are the amplitude and phases of semidiurnal and diurnal tides 
varying irregularly in space?  
 Tides are the integrated product of multiple gravitational forces acting on a 
system, on Earth the most significant forces are caused by the Sun and Moon.  Since the 
period of solar day and year are not synchronous with the Moon’s, and the tidal bulge 
on a sphere occurs both towards and sway from the acting body, tides vary according to 
the position of all considered bodies.  Irregular tidal patterns occur due to the variant 
distance between all considered bodies, the inclination of the Moon’s orbital plane from 
the ecliptic, and Earth’s own changes in orientation. 
  
Problem 7: How large is the largest equilibrium tide on Earth?   

In a static Earth-Moon system, the tidal deformation of the respective bodies 
would equalize, and the tidal bulge would reach a theoretical maximum.  Being a static 
system implies that parameters such as harmonic free oscillations, structural 
heterogeneities, deformability period, angular velocity, and relative angles of the 
considered bodies are not considered; making for a simpler, but less accurate model.  
Using the constants: g=9.82ms-2, G=6.673×10-11m3kg-1s-2, Mmoon=7.3477×1022kg, 



s=3.84403×108km, rs-1=1.6×10-2, and lmax=6, I solve for the equilibrium tide using the 

formula: 
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, since a static 

system is assumed I will consider the geocentric zenith angle to be 0°, causing the 
Legendre Polynomial term to become 1 and drop out giving: δN=337.9m.

 

 
Problem 8: Why does the Moon keep the same face toward the Earth? 
 The Moon’s eccentric center of gravity is attracted to the barycenter of the Earth – 
Moon system, exaggerated by the inclination between the equatorial plane and the 
plane of the Moon’s orbit.  Over time the system’s motion slowed to become tidally 
locked, until the Moon’s period of axial rotation and its period of orbital revolution 
about the Earth were synchronous.  
 
Problem 9: How large is the tidal bulge of the Moon? 

The principal lunar semi-diurnal tide is the M2 wave, with the most significant 
displacement of all tidal constituents at 385mm vertically, 58mm horizontally, occurring 
at 12.42hour intervals. 
 
Problem 10: What are the main rotational eigenmodes of the Earth and to which parts 
of the Earth are they mainly attributed? 
 Harmonic oscillations at multiple frequencies are produced by heterogeneities in 
mass and in viscosity of layers within the rotating Earth, combined with angular torque 
generated by tidal forces, create three main eigenmodes.  The Chandler wobble is 
attributed to and damped by the mantle’s viscous response, maintained by seasonal 
atmospheric and hydrospheric mass redistribution, along with tectonic shifts and 
earthquakes.   The annual wobble is a nutation of the fluid core, with a period 
determined by the ellipticity of the core mantle boundary.    The free inner core nutation 
is the result of interactions between the dissimilar layers of the inner and outer core. 
 


