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Conclusions

• GNSS data from ground networks constrain Earth deforma-
tion before, during and after the February 6, 2023 
M7.8/M75 earthquake doublet in Türkiye. 

• These data capture interseismic, coseismic, and postseismic 
parts of the seismic cycle on the EAFZ.  

• Robust interpolations of interseismic velocities show that 
prior to the events the M7.8 epicentral area around the 
EAFZ  fault experienced transtensional strain accumula-
tion while the M7.5 epicenteral area around the 
Savrun-Çardak-Sürgü Fault experienced transpression.  

• Lack of station coverage in Syria makes horizontal tensor 
strain rates somewhat uncertain, but the result is consis-
tent for two choices of analysis method and many choices 
of radius (20 to 90 km) inside which to include interpolated 
observations.

• The directions of coseismic P- and T- moment tensor axes 
in the M7.8 and M7.5 are similar to the azimuths of maxi-
mum contractional and extensional interseismic strain 
rates from GNSS.  Both rotate clockwise from M7.8 to M7.5.  
This rotation is similar to the di�erence in strike between 
the EAFZ and the Savrun-Çardak Fault.

• These alignments indicate the close relationship between 
interseismic strain accumulation, seismic strain release, 
postseismic stress relaxation, and long term evolution of 
the EAFZ systems. 

• There may be asymmetry in the viscoelastic response 
across the EAFZ.  This could be an apparent asymmetry 
owing to sampling bias because of poor station in Syria, or 
could be a physical feature attributable to curvature of 
faults, interaction between di�erently striking faults, or 
horizontal variation in material properties.  
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Coseismic Displacements
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Take Away Points:  Between the M7.8 and M7.5 earthquakes there is a rotation of the directions of coseismic contraction 
and extension, similar to the rotation seen in the azimuth of interseismic strain rate axes, and moment tensor P-/T- axes .  
Signi�cant coseismic displacement is detectible to at least hundreds of km from the epicenters. Displacement magnitudes 
continue to decrease until ~1000 km.  The operational earthquake radius used by NGL (r0 = 10^(M/2 - 0.79)) gives 1288 km.  
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Median Formal Uncertainty :  0.32 mm
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Note: Some near-�eld vectors 
are too large to �t on the map
when plotted at this scale, so 

have been plotted with breaks. 

Coseismic vector displacements 
to the right are plotted with all 
vectors the same size to 
emphasize the coherence of the 
signal in the medium to far �eld. 
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Postseismic Motion from Detrended Time Series
24 hour solutions
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Motion of Detrended Time Series
24 hour solutions
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Take Away Points:  The postseismic deformation is the cumulative response from both earthquakes which 
have a combined moment of M~7.9.   The post-event time series are less complete than the pre-earthquake 
data, but at many stations show clear signs of ongoing stress relaxation.   We solved for the amplitude of 
post-event transient motion and a time constant using the exponential decay model x(t) = A*[1-exp(-(t-t0)/tau)]. 
The solution using data from the �rst ~4 months after the event gives a relaxation time of ~0.1 year .  Above we 
plot the east and north components of the estimates for A as vectors on the map. 

The results show that the map-view pattern of deformation is similar to the pattern of coseismic deformation.  
Displacements are usually, but not always, smaller than the coseismic displacements (see histogram below left).  
Based on the azimuth of vector displacements the pattern is more similar to that of the M7.8 coseismic. 

That pattern also shows left lateral motion across both faults decaying into the far-�eld.  The response is very 
wide, with a coherent pattern extending hundreds of km from epicenter. These signals and the magnitude of 
the event are consistent with the presence of viscoelastic upper mantle response. 

There may be asymmetry in the response across the faults.  Could this be a function of sampling bias owing to 
the lack of station in Syria? A physical feature attributable to curvature of faults, interaction between the earth-
quakes or horizontal variation in material properties?  

47 mm west

22 mm north

TUF1

Histogram of Postseismic Displacement Magntiude
As as a Percent of Coseismic Motion

at Each Station

0 100% 200% 300% 400%
0

10

20

30

40

50

60

Coseismic Azimuth

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0
5
10
15
20

Postseismic Aziumth

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0
5
10
15
20

MIDAS GPS Velocities
Eurasia Reference Frame

Arabia Reference Frame
http://geodesy.unr.edu/velocities/midas.EU.txt

http://geodesy.unr.edu/velocities/midas.AR.txt

Interseismic Velocity and Strain Rates

Eurasia Reference Frame. Filtered. Gridded.
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Take Away Point:  The EAFZ and the Savrun-Çardak faults experienced similar rates but di�erent styles of strain 
accumulation prior to the Kahramanmaraş earthquake sequence.  The EAFZ experienced transtension, while 
the Savrun-Çardak fault experienced transpression.  This would tend to reduce net fault locking prior to the 
M7.8 mainshock, but increase net locking on the fault prior to the M7.5. 
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Abstract 
The February 6 2023 earthquake sequence in the East Anatolian Fault Zone (EAFZ) 
was dominated by events of magnitudes (Mw) 7.8, 6.7, 7.5, and 6.0 within an 
11-hour time window.   The EAFZ falls within the CORS-Tr, the Turkish national net-
work of 167 GNSS stations with a spacing of 80-100 km, delivering carrier phase data 
every 1 s.  This dense network allows us to estimate the displacement �eld during 
this devastating earthquake sequence with unique spatio-temporal resolution and 
precision.   This presents the opportunity to understand this sequence in ways that 
are enabled by GNSS: (1) CORS-Tr data started in 2008 which, together with global 
data, provides a long-term context on plate and crustal block rotations, interseismic 
strain accumulation, co-seismic strain release, and post-seismic relaxation. (2)  GNSS 
e�ectively extends the temporal sensitivity of seismology from seconds to decades, 
enabling detection of aseismic deformation that is not associated with the seismic 
radiation �eld.  (3) In contrast to InSAR, GNSS provides temporal resolution between 
the events, and unambiguously samples displacements in 3 dimensions.   Given 
these unique capabilities, scienti�c interpretation can be enhanced by considering 
the GNSS data together with complementary data from seismology, geodetic imag-
ing techniques such as InSAR, pixel tracking, optical methods, and geological data 
on surface rupture.

Here we present results that highlight the strengths of the CORS-Tr GNSS data for 
constraining all aspects of the seismic cycle, including pre-seismic strain accumula-
tion, the permanent coseismic displacement including far-�eld motions that are 
sensitive to the deepest part of slip, and postseismic deformation.   Our analysis con-
siders 5-minute time series which enable distinguishing separate coseismic dis-
placements from the individual events that occurred on the same day, and 24-hour 
time series that resolve signi�cant coseismic displacements over 1000 km from the 
epicenters.  Comparison of the coseismic displacement azimuths with the pre-seis-
mic tensor strain rate �eld suggests close alignment between strain accumulation 
and release for each event in the doublet.  We resolve the clear signal of postseismic 
deformation with a relaxation time constant of ~0.1 years following the doublet.


