Block Modeling in the Vertical Dimension Constrained by Three-Component GPS Measurements

Bill Hommond, G. Blewitt, C. Kreemer, H.P. Plag

University of Nevada, Reno, Reno, NV 89557 earth
University of Nevada, Reno ' whammond®@unr.edu Scpe

www.earthscope.org

The Vertical GPS Signal - Nevada and Eastern California The Northern

3 Years Minimum 4 Years Minimum Walker Lane
edis Down, Blue is Up Red is Down, Blue is Up _ o , ,
left) The vertical GPS velocity field at sites (far left) and interpolated (near
left) for various choices for the minimum time series length observed. A 4 | | | | | | | | | |
42 ' ' @ 6 ' ' ' ' 42 T T T T T T H : H
o . . © ©) 42 ' 2 year minimum provides more spatial coverage compared to 6 years, but al HORIZONTAL MOTIONS FROM BLOCK MODELING |
IntrOd UCtIOI‘I ~ . / large outliers appear that reflect the larger uncertainties of vertical rates
a1l : _ A s compared to horizontal rates. Once time series are over 5 years long, there
O () @ 41 , : : )
. . . . ‘ @ . ,‘? o . M pasg ELKO GOSH are fewer outliers and a more stable picture of the vertical rate field 4051 i
We are developing an analytlcal procedure for solving for (OIS D ii?»;?;ﬁ’ . © . ) RUBY - emerges. Only sites from PBO, MAGNET and BARGEN have been included
crustal block motions in complex fault zones using all three I <30 NSNS : " 1 in this figure. For this analysis regional filtering has been applied using wob o -
o ° o : 401 i i i S evada
components of GPS velocity constraints. Traditional block stations on that geographically cover the Great Basin. : =
° 1 ° ° e o - 39.5F .
modeling assumes that the Earth’s lithosphere is divided 30l . i = oo The long running, high-quality continuous stations in eastern Nevada are
into elastic spherical caps that come into contact and are ¥ extremely stable, with vertical GPS rates for MINE, EGAN, MONI, RAIL,
o . . 39 B
locked (not slipping) at the surface, but slip continually : £ & ECHO, ALAM, that are within 0.2 mm/yr of one another.
° ° ° ° ° ° ° 38 © 38 L
below seismogenic depths during the interseismic time. In 38 £CHO The promiment upward moving area in central Nevada is likely attribut- 385} / -
areas of tectonic extension or contraction, however, where N N able to ongoing viscous relaxation following the historic earthquakes in e
the blocks have a component of motion normal to the faults, 37 4 37 ol _ central Nevada.\ seismic belt (CNSB earthquakes include the 1954 Dixie Longitude
. o o . . . « e ‘ NG _q Valley, 1954 Fairview Peak, 1915 Pleasant Valley, 1872 Owens Valley, 1932 B 0 | B |
these models predict variations in the vertical interseismic Cedar Mtn.) N
velocity. Thus vertical component GPS should be sensitive to 361 : 36 by "% Tt C Aeex | Vertical s Rtation Rate (/)
) | 361 ' SHO - : : : .
the tectonic signals if the slip rates are large enough. . . B -1.5 bel.ov.v) A mpdel of the wsoe!astlc rela?<at|9n process does a good job ex-
[numerou: tliers removed for clair plaining this part of the vertical velocity field. Vertical Translation (Ur) Predicted
35 : : : I I I I I | | | | | | | | 40-5 2
Using the vertical component data could be helpful for TR T e e T T e 22 2t 0 1o e 1 Al Al MM g e e e s
ongitude Longitude Longitude
constraining the dips on faults, the long-term rate of uplift of Horizontal GPS Velocities 6 Years Minimum Vertical Rate Predicted by * 1
mountain ranges, and .t;ub5|dence of valley bottoms. We will North America Reference Frame Viscoelastic Relaxation from CNSB Earthquakes . N
explore the use of vertical component GPS measurements to 42 . —- o . . . . 42 . . 42 N o 2
. ; 42° i
constrain such a model. These models may also be useful for k7 ‘ 39 i’
identifying where additional sites could be deployed to best i /{ g ’. Al ) __ | / - n 15
measure interseismic vertical motions. AN yf‘ g ° cusvIREDs 385 2 o0 11 s gy W2
G T e ORI 1
. . A7 ot g ,fi A B a0t ® wl MINE sl
We here present the analytical formulation for block mod- Vol BN 92}/? (7 a0
. ¢ : 2 Nt Tk o T AT A 04 B 2 mm/
eling that uses the vertical component as a constraint, plus b 4?;’" N fj'z 7 ;Vr 7 A ccAn 08 40.5
° ° ° ° ° RN ) g 1 E (\ 39 L 39
observations of vertical GPS in eastern California and i 5 e, )-i‘*;p-; L o o
° ° ° ° ° t“*. 35\& + ¥ Vi [ 3 -.g I 40
Nevada. Much of the vertical signal is attributable to visco- RIS § N : 2 I" o ° 5 i
elastic relaxation following large historic earthquakes in e s gl < PN 38 B £6r0 i 2.5
° ° ° i L] - —1-0. ’
cetnral Nevada. The total vertical signal is expected to have J i 09 >
contributions from postseismic and strain accumulation on sl | a7 39
° ° ° ° N ":‘"El! - -1
faults. Separating these signals requires modeling both , R
components and comparing these models to the observa- v = ol Pk NH Ry 36| . 31 ~120 -119 ~118 117
° BEPK -1.5 -
tions.
, : Above) Using the methodology outlined below, we use a block
_1'200 _ %8° _114° 023 122 121 120 119 118 117 116 115 —114 a1 130 1o s o117 116 i a2 %2 21 120 119 —11I_8 17 116 115 114 2 model of the .northerr.1 Wall.<er Lane to predict vertical mojcions.
Longitude Longitude Longitude Longitude The total vertical motion will be the sum of the viscoelastic post-
seismic relaxation (left) and the interseismic tectonic signal.
° ° ° = ° °
Method: Blocks in Three-Dimensions Method: A Simple Model Method: A Simple Solution
& e Map View Red=Input Synthetic Data
Profile Across Mode : = icti
The long term motion is the sum of the interseismic rates and coseismic rates [Savage, 1983] 10 : Long Term Motion Greeglal\élli)_dFe{le;rdefalftlon
A Black=Long Term 5 _
- - - - : 1.2
vLong Term— Y Interseismic + Y coseismic - R —_ 1 1 1.2 ' ' ' ' '
ed=Interseismic :
5 — : : : 1 - T
Since we use GPS data collected between the time of large earthquakes to constrain block motions, we must — Green=Coseismic Rate : - - —
rearranging the terms to give us the basic relationship between our data and our model. We assume that any transient E : 0.8 i} 08"
motions not associated with interseismic deformation have been removed. c o | ol
Y Y bY 2 0.4 : ' / - %
vlnterseismic= vLong Term vcoseismic © A A — 04F
E 3 I R .
] I 8 0.2}
Uqb € 0 . - -~ -— —1>
UG’ g —0.2 ! ! ! ! ! or
0 0.5 1 1.5 2 2.5 3
. . T Ur T T T 02 (I) 0?5 ‘; 1!5 é 2.5
| —cos0,Ab —sin0AP resindydd  nd0 0 rao 0 0 e B .
Vps=|cos 0yA P 1 —A0 0 roSin0,Ap r,A0 —rysin6,A¢p 0 0 04 A Jault - A’ - 08 D06 S04 =02 ° 0 04 08 0 1
| sin6,A ¢ YAY?) 1 0 0 0 0 roA6  rysinf,Ad || £,
w, B 1% 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
w, Distance Across Model
Wy
' ' _ Interseismic—North Coseismic-North
L N . Translation—-North
-2.(a,G ;i +b,Gy ) . o8 = 2
= A 08 ool e . *
. 06 0 os 0
;;GPS=Amlt_Z (a, Gy i tb,Gy 1) z:z -2 0.2 2
e 0 o0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0 0.2 0.4 0.6

This arranges the equations for the three-dimensional translations and rotations of a block constrained by three
component GPS vectors [Savage et al., 2001] into matrix A and model parameters into vector m;, for simplicity of
programming, etc. Each block is allowed to translate ( U,,U,, U, )androtate ( w,,w,,w, ) in space, and deform
according to a constant horizontal strain rates €,4, €44, €0o . These nine parameters represent the potential “long-
term” motion of the block possible in three-dimensions. The interseismic deformation is the long-term minus the
cumulative effect of coseismic displacements, so the second term 1s the adjustment. It includes terms for the strike slip
and normal slip rates a;, b, which are mapped into surface displacements using functions based on Okada's formulation
for each component Ggs and Gy. These free parameters are ordered in model vector m,;, Since multiple fault segments
may effect the strain accumulation at each GPS site, we sum over the nearest L fault segments. Usually 3 to 5 are
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enough, but this depends on the complexity of the fault system. Translation-Up
Since there are 9 parameters per block and 2 parameters per fault segment, there are rarely enough data on each block
to fully constrain the problem. Thus the model must be regularized, with constraints placed upon it by a combination
of the data and other constraints that we will discuss next. ‘
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1) Slip rate consistency with block motions. We assume that where blocks come into contact at faults, the difference 0o 02 04 06 08 1 12 14 16 18
in long term rate between adjacent blocks j, and j, is the same as the slip rate across the fault:
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and employ a weighted inversion using covariance weighting matrix
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