Instructor Name: Bill Hammond
Office Location: SEM 315
Phone Number: 784-6436
Email Address: whammond@unr.edu

Course Description:
This course develops the basic concepts and practice of geophysical geodesy, with emphasis on the quantitative description and modeling of deformations of the solid Earth using precise space-based methods such as GPS. Topics include measurement of surface deformations associated with the earthquake cycle, tectonic plate boundary deformation, volcanoes, subsidence, etc. The curriculum will emphasize the relationships between data and models, recent seismic events, and provide an overview of recently constructed geodetic facilities such as the EarthScope Plate Boundary Observatory. The course is appropriate for graduate students and upper division undergraduates (400/600 level, 3 units).

Course Prerequisites: GPH 333 (or permission from instructor)

Required texts, course materials:
No required text or materials

Course Objectives and/or learning outcomes:
Students will acquire knowledge of modern space geodetic technologies (e.g. GPS) precision and capabilities. They will develop skills in building quantitative computer models that explain geodetic data in terms of solid Earth processes.

Description of Assignments: (exams, quizzes, projects, papers)
Readings
Problems sets
1 Mid-term
Project involving computer programming/data analysis
Graduate students do more sophisticated project and give an oral presentation.

Grading Criteria:
Participation - Includes attendance, contribution to class discussions (10%/10%).
Problem sets - Graded according to completeness, neatness, correctness (30%/25%).
Mid-term - Graded (20%/10%).
Projects - Graded on completeness, neatness and quality (25%/25%).
Presentations - Graded on preparation, clarity, diction, content (0%/15%).
Final Exam (15%/15%).

Assignments handed in late will be accepted at reduced value towards grade.
Additional Requirements for 611 credit:
Students who take this course at the graduate level will be required to do a more sophisticated numerical analysis or modeling project and present the outcome of this project orally to the class at the end of the term.

Academic Dishonesty Policy:
Students are expected to adhere to the ethical code as described in the UNR Student Handbook. This code specifies that with enrollment, an individual commits to the principles embodied in the code. Academic dishonesty in any form is unacceptable. In the event of an academic dishonesty issue, the procedures for addressing the issue are outlined in the University’s “Academic Dishonesty Procedures”, which can be obtained from the Director of Student Judicial Affairs in the Jones Visitor Center.

Students With Disabilities
Students with disabilities or who require special accommodations should notify the instructor at the beginning of the course so that suitable arrangements may be made.

Course Calendar/Topics Outline:

I. THEORETICAL BASICS & TOOLKITS

week 1. Geodetic Lexicon
 Class Logistics
 Pillars of geodesy - what we won’t cover in this class
 Earth’s gravity field and geoid
 Datums
 latitude, longitude
 What is height?

 Problem set #1 - getting started with Matlab

week 2. Reference Systems, Frames and Transformations
 Reference frame basics (CM, CE, CF, etc.)
 Helmert 7-parameter transformations: Rotation, Translation, Scale
 Euler Rotations: A plate moving on a sphere
 Coordinate Transformations: X,Y,Z to N,E,U
 Uncertainty and Covariance
 Models and Data

 Problem set #2 - solve for rates from time series

week 3-4. Fundamentals of Deformation: Strain, Stress & Elasticity
 Tensors, 2 and 3 dimensions
 Shear and bulk moduli
 Other rheologies, e.g. viscoelasticity
 Stress/Strain Invariants
 World Stress Map
 Strain Maps

 Problem sets #3 - solve for strain rates from velocity fields.
week 5.-6. The GPS/GNSS system. Flavors of GPS.
Data content and structure
Theory, model equations.
Properties of system, Orbits, Baselines, Triangles.
Methods and uses.

Problem set #4 assigned.

mid-term Oct. 1.

II. CURRENT TOPICS IN GEODESY

week 7-8. EarthScope, The Plate Boundary Observatory/GGOS
Online tour of the facilities
Data products, access
Volcano Geodesy
Western US/Basin and Range tectonic deformation,
Readings and Discussion
Recent large earthquakes and swarms

Deadline: Graduate Student Projects must be defined.

mid-Oct. Field Trip to EarthScope Instrumentation

III. TECTONICS AND THE EARTHQUAKE CYCLE

week 8-9. Plate Motions and Plate Boundary Zones
Tectonics, rigidity of plates
Rates of motion, uncertainties
Distributed continental deformation
Continuum vs. block representations
Stress in the lithosphere, boundary vs. gravitational stress

Problem set #5

week 9-10. The Earthquake Cycle – Interseismic Deformation
Observations, Geology, GPS, InSAR, Western U.S. perspective
Fault models
Savage equations
The San Andreas fault
Fault Creep

Problem set #6

week 11. The Earthquake Cycle – Coseismic Deformation
What happens during an Earthquake?
The Earthquake as seen with Seismology vs. Geodesy
Using data to infer the properties of an earthquake model
Okada functions.
Geodetic case studies:
The 1906 San Francisco Earthquake
The February 2008 Wells NV earthquake
2008 Mogul Swarm
The coming big ones (Cascadia, Southern California, etc.)
Periodic, Time predictable and slip predictable models.
Episodic Tremor and Slip in Cascadia and elsewhere

week 12. The Earthquake Cycle - Post-seismic deformation
 Observations
 Transient vs. secular deformation
 Rheologies: brittle vs. viscous-viscoelastic
 Models, historical development

week 13. Interferometric Synthetic Aperture Radar (InSAR)
 What is it? Strengths, Weaknesses
 Coseismic deformations
 Other Uses, e.g. subsidence

week 14. Graduate Student Class presentations

week 15. Guest Lectures
 What's the Professor been up to?
 (e.g. Tsunami Warning, Real-Time GPS, Colorado Plateau)

week 16. Open for catch up.