GEOL 695: Geophysical Geodesy - Day 6

Preliminaries

- Attendance and Make up policies
- Readings

New Readings

required:
Turcotte, D. L., and G. Schubert (1982), Geodynamics Applications of Continuum Physics to Geological Problems, John Wiley \& Sons, Inc., New York.
Section 2-7.
appendix of:
Savage, J. C., W. Gan, and J. L. Svarc (2001), Strain accumulation and rotation in the eastern California shear zone, Journal of Geophysical Research, 106, B10, 21,995-922,007.

Shen-Tu, B., W. E. Holt, and J. A. Haines (1998), Contemporary kinematics of the western United States determined from earthquake moment tensors, very long baseline interferometry, and GPS observations, Journal of Geophysical Research, 103, B8, 18,08718,117.

Strain, Continued...

On a rotating plate, velocity gradients are not zero, but strain rate is zero.
in general $\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$

Principal strain axes. These are the eigenvectors of the strain tensor i.e. the vectors that satisfy:

$$
\varepsilon d x=A d x
$$

where ε is the strain tensor, and A is a scalar. These two eigenvectors have directions which correspond to the principal strain rate axes. The magnitude of these two vectors are the principal strain rates ε_{1} and $\varepsilon_{2} . \varepsilon_{1}$ is usually the larger value so $\varepsilon_{1}-\varepsilon_{2}$ is always positive.

Strain invariants are properties of the strain tensor that do not change with changes in coordinate axes.

First Invariant:

$$
\varepsilon_{x x}+\varepsilon_{y y}=\operatorname{tr}(\varepsilon)=\varepsilon_{1}+\varepsilon_{\gamma}
$$

The first invariant is always the trace of the tensor (in 2D or 3D). It corresponds to the
dilatational (volumetric) component of the shape change.

Second Invariant:
formally

$$
\varepsilon_{x x} \varepsilon_{y y}-\varepsilon_{x y}^{2}
$$

Another form is commonly used (C. Kreemer personal communication) which has the advantage of being in units of strain (not strain squared):

$$
\sqrt{\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \varepsilon_{x y}^{2}} \text { (sometimes shown squared) }
$$

This contains shear and dilatation components of deformation, and hence "invariant shear" can be accessed by taking the difference to the dilatation.

Also the difference

$$
\varepsilon_{1}-\varepsilon_{2}
$$

is invariant to coordinate axis changes and represents shear in the sense that if the principal strains are equal (isotropic dilatation) then the shear is zero. If $\varepsilon_{1}=-\varepsilon_{2}$ then dilatation is zero and shear is $2 \varepsilon_{1}$.

In three dimensions the equations get a little tricker. It becomes unclear (at least to me) how the notion of a "shear invariant" works at dimensions > 2 .

Models and Data

What is a model?
discussion.

What is a good model?

1) fits data
2) is "reasonable"
3) meets a priori conditions.
4) What are the measures of data fit?

Small residuals to the predictions of a model.
We can impose this condition mathematically on a problem by requiring that

$$
\|\boldsymbol{r}\|=0
$$

Misfit can be quantified

$$
\begin{aligned}
& \chi^{2}=\sum_{i=1}^{N} \frac{\left(d_{i}-d_{i, p r e d}\right)^{2}}{\sigma_{i}^{2}} \\
& \chi_{v}^{2}=\frac{1}{v} \chi^{2}
\end{aligned}
$$

also used to describe the amount of 'scatter' in the residuals:
$\mathrm{RMS}=\sqrt{\frac{\sum r_{i}^{2}}{N}}$
and WRMS $=\sqrt{\frac{\sum w_{i} r_{i}^{r}}{\sum w_{i}}}$
which is similar (though not exactly the same) as χ^{\curlyvee} if using the data uncertainties as your weights.
where the "degrees of freedom" $v=$ number of data (N) minus number of model parameters X_{v}^{2} is always positive and follows X^{2} distributions.
2) What is reasonable?

Well that depends. But commonly we prefer simple models to complex models. This is a choice of the modeler, owing to finite human intelligence, or the belief in "Occam's razor" applied to modeling.

$$
\|\boldsymbol{m}\|=0
$$

3) How do we meet a priori conditions?

Many ways have been tried. One way is to look for a model that is close to some other particular model:

$$
\left\|\boldsymbol{m}-\boldsymbol{m}_{\text {apriori }}\right\|=0
$$

another choice would be to require that the model is "smooth" i.e. the norm of the Laplacian operator of \mathbf{m} is as close to zero as possible.

$$
\left\|\nabla^{2} \boldsymbol{m}\right\|=0
$$

or flat

$$
\left\|\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}\right\|=0
$$

These are just some ways and many others are possible.
In the end a model can find a balance between the three criteria by finding a way to minimize some function of all three e.g. solve the system such that

$$
\|\boldsymbol{r}\|+\|\boldsymbol{m}\|+\nabla^{2} \boldsymbol{m}=0
$$

the importance of the various terms can be controlled by using weights, i.e.

$$
\alpha\|\boldsymbol{r}\|+\beta\|\boldsymbol{m}\|+\gamma \nabla^{2} \boldsymbol{m}=0
$$

where alpha, beta, gamma are imposed by the modeler, experiented with until a model with the desired properties is found.

