Table S1. Long. Lat. Phi_SKS sigma name plate O/C study phi_APM -43.80 -21.22 -117 5 barb SA C A06 -91 -43.80 -21.22 -73 5 barb SA C A06 -91 -42.00 -21.05 -93 4 natb SA C A06 -91 -42.00 -21.05 -61 5 natb SA C A06 -91 -46.03 -20.04 -50 3 bamb SA C A06 -91 -44.93 -18.09 -77 9 trmb SA C A06 -91 -46.82 -17.27 -82 4 prcb SA C A06 -91 -48.01 -15.64 -117 2 bdfb SA C A06 -91 -48.69 -17.74 -88 2 corb SA C A06 -91 -47.38 -13.81 -105 3 cv1b SA C A06 -91 -49.09 -15.26 -86 3 gnsb SA C A06 -91 -51.49 -17.89 -73 8 jatb SA C A06 -91 -50.86 -15.14 -113 2 pazb SA C A06 -91 -49.08 -13.33 -110 4 porb SA C A06 -91 -54.88 -17.60 -105 2 pp1b SA C A06 -91 -115.09 67.83 -110 7 COP NA C B00 -134 -111.00 66.89 -100 10 ULU NA C B00 -130 -111.47 66.03 -114 9 KAR NA C B00 -130 -107.47 65.92 -109 9 GLK NA C B00 -128 -110.63 64.69 -136 9 KOA NA C B00 -129 -115.10 64.41 -130 9 COL NA C B00 -132 -116.01 63.51 -140 2 SNR NA C B00 -132 -109.21 63.44 -115 10 KEN NA C B00 -128 -113.89 63.19 -139 11 DIS NA C B00 -131 -114.51 62.49 -124 10 YKW NA C B00 -131 -110.74 62.41 -115 9 LKS NA C B00 -128 -113.68 61.17 -121 12 FRS NA C B00 -130 -117.44 61.05 -116 7 FPR NA C B00 -132 18.55 4.43 31 3 BNG NU C BH99 22 140.01 -66.67 88 2 DRV AN C BH99 104 -158.01 21.42 -140 6 KIP PA O BH99 -62 166.43 -22.28 -13 5 NOC AU O BH99 2 70.21 -49.35 107 5 PAF AN O BH99 109 55.75 -21.16 -51 13 RER SO O BH99 33 5.53 22.79 -6 1 TAM NU C BH99 6 -14.36 -7.93 -37 20 ASCN SA O BI01 -91 25.26 -28.61 46 4 BOSA NU C BI01 31 -4.86 6.67 17 4 DBIC NU C BI01 27 25.60 -25.02 59 5 LBTB NU C BI01 30 55.48 -4.67 35 2 MSEY SO O BI01 42 -5.75 -15.96 54 12 SHEL NU O BI01 47 17.58 -19.20 47 4 TSUM NU C BI01 33 28.19 -15.28 18 3 LSZ NU C BI01 27 -17.92 28.68 19 12 TBT NU O BI01 -18 18.55 4.43 35 2 BNG NU C BI01 22 55.75 -21.16 51 13 RER SO O BI01 33 5.53 22.79 6 1 TAM NU C BI01 6 -87.87 32.78 -88 10 EUAL NA C B97 -110 -99.74 38.81 -138 6 CBKS NA C B97 -117 -99.74 38.81 -136 7 CBKS NA C B97 -117 -91.25 38.06 -146 3 CCM NA C B97 -112 -91.50 47.95 -128 2 EYMN NA C B97 -113 -91.50 47.95 -123 1 EYMN NA C B97 -113 -90.43 37.98 -138 5 FVM NA C B97 -112 -90.43 37.98 -146 3 FVM NA C B97 -112 -90.25 41.91 -134 11 JFWS NA C B97 -112 -90.25 41.91 -141 11 JFWS NA C B97 -112 -85.59 35.60 -121 6 RSCP NA C B97 -109 -98.78 34.74 -71 4 WMOK NA C B97 -116 -98.78 34.74 -71 3 WMOK NA C B97 -116 -78.54 42.48 -103 5 YSNY NA C B97 -105 -78.54 42.48 -98 3 YSNY NA C B97 -105 -9.31 -72.65 67 6 KOH1 AN C B07 69 -9.71 -75.56 77 6 KOH2 AN C B07 47 -8.79 -74.71 63 6 KOH4 AN C B07 58 0.07 -75.00 73 5 KOH6 AN C B07 91 -9.62 -74.28 86 5 Weigel AN C B07 60 -11.34 -74.91 34 4 KOT1 AN C B07 51 -11.26 -74.55 27 7 KOT4 AN C B07 54 -14.36 -7.93 -99 11 ASCN SA O B04 -91 51.86 -46.43 148 15 CRZF AN O B04 106 55.48 -4.67 32 3 MSEY SO O B04 42 70.21 -49.35 103 10 PAF AN O B04 109 55.75 -21.16 99 8 RER SO O B04 33 -23.61 14.97 52 11 SACV NU O B04 24 -5.75 -15.96 59 6 SHEL NU O B04 47 -17.92 28.68 17 5 TBT NU O B04 -18 -113.35 53.22 -147 10 EDM NA C BC95 -127 -133.52 68.30 -99 10 INK NA C BC95 -147 -114.60 62.49 -127 10 YKW2 NA C BC95 -131 18.50 4.40 17 1 BCAO NU C C00 22 18.50 4.40 16 1 BCAO NU C C00 22 -48.01 -15.64 -117 2 BDFB SA C C00 -91 29.20 50.70 110 10 KIEV EU C D99 30 25.00 48.30 -60 10 KOV EU C D99 29 24.00 49.80 -48 10 LVV EU C D99 27 -113.35 53.22 -127 10 EDM NA C E06 -127 -94.08 58.76 -125 10 FCC NA C E06 -117 -101.97 54.72 -133 10 FFC NA C E06 -120 -68.54 63.74 -87 10 FRB NA C E06 -101 -133.52 68.30 -63 10 INK NA C E06 -147 -133.52 68.30 -104 10 INK NA C E06 -147 -94.90 74.68 -61 10 RES NA C E06 -122 -79.14 44.77 -65 10 SADO NA C E06 -106 -114.61 62.49 -136 10 YKW1 NA C E06 -131 -114.61 62.49 -129 10 YKW2 NA C E06 -131 -114.61 62.49 -132 10 YKW3 NA C E06 -131 -114.61 62.49 -132 10 YKW4 NA C E06 -131 -89.72 -1.35 59 7 G02AB NZ O F05 86 -91.38 0.14 83 9 G05 NZ O F05 88 -91.63 -0.30 81 11 G06 NZ O F05 88 -91.45 -0.98 109 17 G07 NZ O F05 88 -130.09 -25.07 -87 5 PTCN PA O F07 -72 -130.09 -25.07 -84 7 PTCN PA O F07 -72 -159.77 -21.21 -45 9 RAR PA O F07 -64 -159.77 -21.21 -63 8 RAR PA O F07 -64 -109.33 -27.13 164 7 RPN PA O F07 103 -109.33 -27.13 33 6 RPN PA O F07 103 -134.97 -23.12 -55 9 RKT PA O F07 -70 -134.97 -23.12 -54 4 RKT PA O F07 -70 -147.62 -14.98 -63 9 TPT PA O F07 -67 -147.62 -14.98 -56 5 TPT PA O F07 -67 -149.46 -23.35 -80 5 TBI PA O F07 -66 -149.46 -23.35 -77 6 TBI PA O F07 -66 -145.51 -17.36 -44 5 ANA PA O F07 -67 -145.51 -17.36 -54 5 ANA PA O F07 -67 -140.96 -18.06 -75 9 HAO PA O F07 -68 -140.96 -18.06 -66 7 HAO PA O F07 -68 -139.01 -9.77 -123 3 HIV PA O F07 -69 -139.01 -9.77 -106 18 HIV PA O F07 -69 -148.71 -14.87 -72 12 MAT PA O F07 -67 -148.71 -14.87 -67 10 MAT PA O F07 -67 -152.27 -16.45 -103 16 MA2 PA O F07 -66 -152.27 -16.45 -108 5 MA2 PA O F07 -66 -147.69 -23.87 -46 12 RAI PA O F07 -67 -147.69 -23.87 -68 12 RAI PA O F07 -67 -144.34 -27.62 -71 9 RAP PA O F07 -67 -144.34 -27.62 -65 9 RAP PA O F07 -67 -136.44 -18.46 -101 3 REA PA O F07 -70 -136.44 -18.46 -89 6 REA PA O F07 -70 -151.37 -22.43 -97 3 RUR PA O F07 -66 -151.37 -22.43 -62 11 RUR PA O F07 -66 -145.04 -14.47 -67 19 TAK PA O F07 -68 -145.04 -14.47 -79 13 TAK PA O F07 -68 -79.14 41.26 -110 8 MM07 NA C F00 -106 -80.07 41.11 -114 5 MM08 NA C F00 -106 -81.21 40.79 -130 8 MM09 NA C F00 -107 -82.30 40.61 -110 10 MM10 NA C F00 -107 -83.19 40.22 -122 5 MM11 NA C F00 -108 -84.37 40.04 -110 8 MM12 NA C F00 -109 -85.31 39.83 -117 5 MM13 NA C F00 -109 -86.39 39.55 -127 10 MM14 NA C F00 -110 -87.31 39.29 -120 7 MM15 NA C F00 -110 -88.30 38.92 -119 6 MM16 NA C F00 -111 -89.33 38.67 -120 10 MM17 NA C F00 -111 -90.57 38.53 -123 5 MM18 NA C F00 -112 -91.25 38.06 -141 8 CCM NA C F00 -112 -82.51 49.45 -111 11 KAPO NA C F06 -108 -79.72 48.50 -110 13 KILO NA C F06 -106 -79.76 50.02 -91 13 MALO NA C F06 -107 -81.63 50.18 -117 14 OTRO NA C F06 -108 -81.34 46.64 -104 12 SUNO NA C F06 -107 -77.76 48.19 -91 8 VLDQ NA C F06 -105 -106.03 33.34 -139 10 MB01 NA C G03 -119 -103.84 32.08 -161 10 NM07 NA C G03 -118 -103.97 32.20 -175 10 NM08 NA C G03 -118 -104.12 32.33 -153 10 NM09 NA C G03 -119 -104.27 32.47 -145 10 NM10 NA C G03 -119 -104.41 32.58 -140 10 NM11 NA C G03 -119 -104.51 32.68 -156 10 NM12 NA C G03 -119 -104.66 32.80 -164 10 NM13 NA C G03 -119 -104.76 32.91 -145 10 NM14 NA C G03 -119 -104.91 33.01 -136 10 NM15 NA C G03 -119 -105.13 33.17 -138 10 NM16 NA C G03 -119 -105.17 33.26 -138 10 NM17 NA C G03 -119 -105.34 33.40 -155 10 NM18 NA C G03 -119 -105.45 33.49 -145 10 NM19 NA C G03 -119 -105.59 33.60 -150 10 NM20 NA C G03 -119 -105.87 33.84 -136 10 NM22 NA C G03 -119 -106.01 33.95 -146 10 NM23 NA C G03 -119 -106.12 34.05 -118 10 NM24 NA C G03 -120 -106.26 34.17 -122 10 NM25 NA C G03 -120 -106.36 34.26 -139 10 NM26 NA C G03 -120 -106.52 34.39 -132 10 NM27 NA C G03 -120 -103.11 31.42 -172 10 TX01 NA C G03 -118 -103.20 31.51 -168 10 TX02 NA C G03 -118 -103.32 31.62 -170 10 TX03 NA C G03 -118 -103.45 31.73 -180 10 TX04 NA C G03 -118 -103.61 31.88 -165 10 TX05 NA C G03 -118 -103.71 31.97 -162 10 TX06 NA C G03 -118 52.73 -7.01 22 12 ALPLB SO O H05 40 55.67 -4.21 14 14 ARDPS SO O H05 42 55.20 -3.73 18 18 BRDPS SO O H05 42 55.73 -4.28 40 10 CRSPS SO O H05 42 56.27 -7.14 69 8 CTVPS SO O H05 41 55.67 -3.81 46 8 DNSPB SO O H05 42 53.68 -5.68 32 8 DSRPS SO O H05 41 55.87 -4.32 15 9 FLCPS SO O H05 42 55.83 -4.37 30 9 LDGPS SO O H05 42 55.43 -4.63 26 6 MHDLB SO O H05 42 55.46 -4.57 35 5 MHNPS SO O H05 42 55.53 -4.79 30 7 MHPLB SO O H05 42 55.36 -4.62 22 9 MHSPS SO O H05 42 55.54 -4.48 29 8 MMLPS SO O H05 42 55.25 -4.40 34 5 NRDPS SO O H05 42 55.38 -5.86 45 10 PLTPB SO O H05 41 55.75 -4.34 15 18 PRBPS SO O H05 42 55.71 -4.31 34 12 PRTLB SO O H05 42 55.25 -4.48 35 9 SLHLB SO O H05 42 43.00 23.93 -7 14 AFFS AR C H06 27 43.04 23.93 -13 10 AFIF AR C H06 27 43.24 25.88 8 14 ARSS AR C H06 24 35.27 28.19 3 15 AYUS AR C H06 21 35.10 28.43 2 10 BDAS AR C H06 21 41.60 19.88 -3 22 BLJS AR C H06 34 43.54 17.71 -9 9 DJNS AR C H06 36 44.32 22.84 -1 15 HALM AR C H06 28 49.69 25.19 -8 16 HASS AR C H06 23 41.79 27.38 -17 12 HILS AR C H06 21 38.40 32.48 7 11 HIT AR C H06 10 39.26 25.79 -3 15 KBRS AR C H06 25 40.41 20.27 -9 15 LTHS AR C H06 34 42.21 19.17 -3 14 NAMS AR C H06 35 37.32 31.39 -6 14 QURS AR C H06 13 42.78 21.31 7 14 RANI AR C H06 31 45.50 23.52 6 13 RAYN AR C H06 27 46.64 24.72 4 33 RIYD AR C H06 25 35.84 29.74 1 9 RUW AR C H06 17 42.38 18.29 -7 10 SODA AR C H06 36 40.35 21.28 9 9 TAIF AR C H06 33 43.48 19.54 -3 10 TATS AR C H06 34 36.55 28.23 -13 15 TBKS AR C H06 21 42.36 25.79 -2 11 UQSK AR C H06 24 37.99 24.34 -4 13 YNBS AR C H06 29 -115.12 -13.80 -76 8 38 PA O H04 -77 -114.53 -12.37 -90 7 39 PA O H04 -77 -115.20 -15.41 -80 4 42 PA O H04 -77 -115.25 -16.00 -92 4 44 PA O H04 -77 -118.37 -14.85 -76 17 46 PA O H04 -76 -117.60 -15.21 -66 4 47 PA O H04 -76 -42.66 -21.88 -108 2 ALP SA C H03 -91 -42.86 -21.29 -23 10 ATDB SA C H03 -91 -45.58 -22.54 -98 6 BRSB SA C H03 -91 -44.76 -21.00 -57 3 BSCB SA C H03 -91 -45.64 -20.49 -56 7 FRMB SA C H03 -91 -46.28 -20.68 -54 12 FURB SA C H03 -91 -46.12 -23.25 -109 3 IGAB SA C H03 -91 -47.72 -24.09 -86 2 JUQB SA C H03 -91 -49.03 -24.65 -79 5 RSTB SA C H03 -91 -45.96 -21.93 -42 2 SJM SA C H03 -91 -47.43 -23.59 -94 2 SPB SA C H03 -91 -43.19 -22.15 -102 2 TRRB SA C H03 -91 -46.97 -23.00 -94 2 VABB SA C H03 -91 127.25 -15.93 64 9 JA03 AU C HK05 16 127.82 -18.19 48 4 KB14 AU C HK05 16 141.64 -18.00 24 4 TL01 AU C HK05 12 139.41 -20.15 -63 23 TL03 AU C HK05 12 140.00 -21.68 7 7 TL04 AU C HK05 11 121.09 -31.21 64 11 WP15-16 AU C HK05 18 36.57 55.11 -19 9 OBN EU C H94 32 -58.06 -51.67 -110 4 EFI SA O H02 -91 -50.23 -19.74 -73 4 AGVB SA C JA96 -91 -46.73 -21.68 -59 2 CACB SA C JA96 -91 -51.01 -22.81 -94 12 CAPB SA C JA96 -91 -51.05 -22.66 -84 6 CAP SA C JA96 -91 -44.72 -20.24 -53 8 CDCB SA C JA96 -91 -45.64 -20.49 -56 7 FRMB SA C JA96 -91 -46.28 -20.68 -54 12 FURB SA C JA96 -91 -48.81 -21.78 -91 6 IBIB SA C JA96 -91 -54.18 -21.43 -123 3 NAVB SA C JA96 -91 -48.93 -20.88 -69 14 OLIB SA C JA96 -91 -47.50 -20.07 -67 3 RIFB SA C JA96 -91 -51.31 -22.03 -91 8 PPDB SA C JA96 -91 -57.48 -21.46 -124 2 PTMB SA C JA96 -91 -51.33 -20.67 -102 7 TRIB SA C JA96 -91 -90.71 48.32 -120 3 5010 NA C K99 -113 -90.83 48.66 -122 6 5030 NA C K99 -113 -90.76 49.00 -119 7 5050 NA C K99 -113 -90.47 49.34 -145 28 5070 NA C K99 -113 -90.33 49.66 -124 3 5090 NA C K99 -113 -90.59 50.02 -125 4 5110 NA C K99 -113 -90.67 50.36 -112 10 5130 NA C K99 -113 -90.56 50.70 -123 13 5150 NA C K99 -113 -90.35 51.03 -106 10 5170 NA C K99 -113 -90.22 51.35 -112 15 5190 NA C K99 -113 -89.91 51.65 -91 8 B11 NA C K99 -113 -90.02 52.05 -92 3 B12 NA C K99 -113 -90.51 52.41 -92 2 B13 NA C K99 -113 -90.44 52.57 -98 3 B14 NA C K99 -113 -89.88 53.84 -73 19 BBT NA C K99 -113 163.01 5.32 -35 11 KOS PA O K01 -66 166.94 -0.51 -49 5 NAU PA O K01 -65 158.21 6.97 -58 12 PNI PA O K01 -67 151.78 7.45 -5 2 TKK PA O K01 -69 151.78 7.45 -110 4 TKK PA O K01 -69 -59.97 -0.73 -65 14 PTGA SA C K02 -91 74.64 26.48 10 10 AJMR IN C K08 23 72.85 24.01 30 23 DHR IN C K08 25 81.33 24.57 37 9 REWA IN C K08 26 79.88 23.88 47 12 JBP IN C K08 26 77.42 23.24 41 10 BHPL IN C K08 26 77.02 20.70 5 17 AKL IN C K08 27 76.56 18.42 -1 15 LATR IN C K08 28 73.70 20.33 11 2 VARE IN C K08 27 73.30 19.16 6 19 MULG IN C K08 27 72.81 18.90 42 15 BOM IN C K08 28 73.85 18.53 -23 16 PUNE IN C K08 28 74.18 17.31 9 18 KARD IN C K08 28 73.58 17.25 3 20 CKL IN C K08 28 73.88 17.12 7 13 WAR IN C K08 29 73.71 17.00 -1 22 SKP IN C K08 29 73.83 15.49 3 8 GOA IN C K08 29 75.04 15.30 6 16 DHD IN C K08 29 74.82 12.94 3 11 MNGR IN C K08 31 78.00 13.00 30 12 KGF IN C K08 30 78.87 14.47 6 10 CUD IN C K08 30 80.69 17.66 44 16 KGD IN C K08 29 76.35 10.53 -31 11 PCH IN C K08 31 77.47 10.23 -38 7 KOD IN C K08 32 77.47 10.23 60 6 KOD IN C K08 32 76.96 8.51 34 10 TRVM IN C K08 32 85.89 23.80 62 21 BOKR IN C K08 27 82.13 22.13 74 23 BLSP IN C K08 27 79.05 21.15 57 16 NGP IN C K08 27 -34.57 -77.87 75 10 BELO AN C M01 15 140.01 -66.67 100 10 DRV AN C M01 104 -58.06 -51.68 -92 10 EFI SA O M01 -91 -7.39 -70.92 64 10 VNA2 AN C M01 77 -9.67 -71.24 64 10 VNA3 AN C M01 72 87.50 69.30 -20 10 NRIL EU C O02 65 129.68 62.03 150 10 YAK EU C O02 98 -68.04 8.94 -84 4 BAUV SA C P08 -91 62.87 -67.60 95 10 MAW AN C RH08 124 68.17 -70.80 116 5 BVLK AN C RH08 129 67.39 -71.52 159 1 FISH AN C RH08 131 64.17 -72.66 131 8 CRES AN C RH08 134 68.62 -72.93 64 7 NMES AN C RH08 133 74.89 -72.91 216 6 GROV AN C RH08 132 72.55 -70.45 95 6 REIN AN C RH08 127 77.98 -68.58 84 3 DAVI AN C RH08 124 110.54 -66.28 79 10 CASY AN C RH08 113 -130.09 -25.07 -38 9 PTCN PA O RO98 -72 -134.97 -23.12 -53 6 RKT PA O RO98 -70 -149.46 -23.35 -86 2 TBI PA O RO98 -66 -147.62 -14.98 -66 4 TPT PA O RO98 -67 -157.45 2.04 -58 8 XMAS PA O RO98 -65 -47.90 -15.66 -127 10 BDF SA C RS94 -91 -105.91 36.28 -154 18 CZL NA C S92 -120 -106.46 34.95 -139 11 ANMO NA C S92 -120 -106.73 34.27 -139 19 SEVI NA C S92 -120 -106.49 32.34 -169 8 WSMR NA C S92 -120 -106.51 31.77 -175 12 ELPA NA C S92 -120 -105.58 37.54 -157 10 BLAR NA C S96 -120 -105.20 40.38 -123 10 BTO NA C S96 -120 -108.15 39.20 -89 10 DBQ NA C S96 -121 -106.36 39.15 -94 10 LED NA C S96 -120 -108.05 40.60 -53 10 MBL NA C S96 -121 -107.75 40.05 -132 10 MKR NA C S96 -121 -103.70 38.50 -48 10 ORD NA C S96 -119 -103.62 38.07 -40 10 RKF NA C S96 -119 -106.61 37.69 -142 10 SFK NA C S96 -120 -102.50 38.60 -136 10 SHL NA C S96 -118 -104.07 40.32 -129 10 WIG NA C S96 -119 -102.77 40.16 -136 10 YUM NA C S96 -118 13.09 32.12 -28 13 GHAR NU C S04 0 20.88 32.52 46 43 MARJ NU C S04 3 -111.43 49.77 -140 13 AB01 NA C S02 -125 -112.68 51.10 -138 7 AB04 NA C S02 -126 -113.04 51.54 -133 7 AB05 NA C S02 -126 -114.34 52.87 -125 5 AB08 NA C S02 -127 -113.35 53.22 -137 7 EDM NA C S02 -127 -115.76 54.12 -141 5 AB11 NA C S02 -128 -93.70 50.86 -105 1 RSON NA C SC88 -115 -114.59 62.48 -132 2 RSNT NA C SC88 -131 -104.04 44.12 -126 8 RSSD NA C SC88 -120 -85.57 35.59 -134 5 RSCP NA C SC88 -109 27.01 69.76 1 23 KEV EU C SC88 15 -104.04 44.12 -125 5 RSSD NA C SC91 -120 -93.70 50.86 -104 2 RSON NA C SC91 -115 -114.59 62.48 -129 4 RSNT NA C SC91 -131 -85.57 35.59 -121 6 RSCP NA C SC91 -109 36.36 55.10 5 10 OBN EU C SC91 32 -93.65 52.87 -107 5 FLOR NA C SK93 -115 -93.05 52.46 -100 4 NSOW NA C SK93 -115 -93.30 50.53 -116 4 EFOR NA C SK93 -115 -93.07 50.15 -104 5 CROW NA C SK93 -114 -92.86 49.61 -114 2 DLOR NA C SK93 -114 -93.14 49.07 -122 6 CNOW NA C SK93 -114 -93.80 48.10 -99 5 MAMW NA C SK93 -115 -96.42 48.12 -142 5 TRMW NA C SK93 -116 -97.74 48.23 -126 2 FVNR NA C SK93 -117 -99.23 47.85 -152 5 SHNW NA C SK93 -118 -100.36 47.55 -132 8 MCNW NA C SK93 -118 -99.80 46.67 -143 8 STNR NA C SK93 -118 -102.61 45.80 -112 5 LPSW NA C SK93 -119 -102.51 44.91 -97 4 OPSR NA C SK93 -119 -103.39 43.71 -96 5 CPSW NA C SK93 -119 -105.68 44.19 -143 4 GLWW NA C SK93 -120 -105.58 43.46 -151 8 DIWR NA C SK93 -120 -93.69 51.41 -114 10 NBOW NA C SK93 -115 25.26 -28.61 54 4 BOSA NU C S93 31 25.60 -25.02 80 5 LBTB NU C S93 30 22.99 -30.92 21 8 SA09 NU C S93 33 23.91 -30.97 -42 8 SA10 NU C S93 32 23.14 -29.98 26 5 SA13 NU C S93 32 24.02 -29.87 24 2 SA14 NU C S93 32 25.03 -29.90 20 3 SA15 NU C S93 31 23.23 -28.93 49 2 SA17 NU C S93 32 24.31 -28.63 48 4 SA18 NU C S93 32 24.83 -28.91 29 2 SA19 NU C S93 31 26.20 -29.02 20 2 SA20 NU C S93 31 23.40 -27.93 37 3 SA23 NU C S93 32 24.24 -27.88 48 2 SA24 NU C S93 31 25.13 -27.85 58 2 SA25 NU C S93 31 26.18 -27.55 48 8 SA26 NU C S93 30 23.03 -26.93 52 10 SA29 NU C S93 32 24.17 -27.07 48 4 SA30 NU C S93 31 25.02 -27.00 41 2 SA31 NU C S93 31 26.28 -26.87 47 2 SA32 NU C S93 30 23.72 -25.97 44 3 SA37 NU C S93 31 25.08 -25.93 47 10 SA38 NU C S93 31 26.15 -25.90 47 3 SA39 NU C S93 30 24.46 -24.84 61 3 SA59 NU C S93 31 24.96 -23.85 58 4 SA60 NU C S93 30 24.02 -23.95 54 4 SA61 NU C S93 31 25.14 -24.85 69 5 SA62 NU C S93 30 26.08 -23.66 60 4 SA63 NU C S93 30 26.20 -22.97 50 15 SA64 NU C S93 29 27.22 -22.82 63 6 SA65 NU C S93 29 26.37 -21.90 63 3 SA66 NU C S93 29 27.27 -21.89 53 9 SA67 NU C S93 29 26.34 -21.09 57 3 SA70 NU C S93 29 27.14 -20.93 51 4 SA71 NU C S93 29 21.27 -30.93 56 8 SA81 NU C S93 34 26.27 -25.85 42 8 SA91 NU C S93 30 -53.50 69.30 -42 9 GDH NA C U08 -90 -50.62 67.00 -171 5 SFJ NA C U08 -88 -51.74 64.18 -166 18 NUK NA C U08 -89 -49.66 61.99 -157 7 PAA NA C U08 -88 -45.42 61.16 -167 10 NRS NA C U08 -85 -42.31 75.00 -147 19 NGR NA C U08 -82 -31.06 71.91 -119 9 IS2 NA C U08 -74 -46.26 66.47 -160 9 DY2 NA C U08 -85 -106.50 34.90 -145 10 ANMO NA C V94 -120 18.50 4.40 60 10 BCAO NU C V94 22 -47.90 -15.70 -140 10 BDF SA C V94 -91 5.30 60.40 -75 10 BER EU C V94 6 -53.50 69.30 -60 10 GDH NA C V94 -90 27.00 69.80 70 10 KEV EU C V94 15 -158.00 21.40 -135 10 KIP PA O V94 -62 9.60 59.60 20 10 KONO EU C V94 10 88.10 69.40 0 10 NRI EU C V94 65 117.20 -32.90 60 10 NWAO AU C V94 20 -93.70 50.90 -110 10 RSON NA C V94 -115 -141.99 27.88 -78 13 H20 PA O V03 -62 24.89 -28.38 20 10 WAR NU C V95 31 23.86 -29.11 40 10 DOU NU C V95 32 23.12 -29.13 20 10 KAM NU C V95 32 26.27 -25.85 40 10 KLI NU C V95 30 18.50 4.40 30 10 BCAO NU C V98 22 -141.99 27.88 -77 4 H20 PA O W03 -62 -169.53 16.73 -77 5 JOHN PA O W03 -63 -159.77 21.21 -57 6 KIP PA O W01 -62 -155.53 19.76 -67 6 POHA PA O W01 -63 -159.00 19.50 -89 5 OSN-1 PA O W01 -63 -171.78 -13.91 -43 8 AFI PA O WS98b -64 -14.36 -7.93 -97 2 ASCN SA O WS98b -91 -158.01 21.42 -87 4 KIP PA O WS98b -62 -149.58 -17.57 -45 22 PPT PA O WS98b -66 -159.77 -21.21 -45 3 RAR PA O WS98b -64 -109.33 -27.13 156 3 RPN NZ O WS98b 103 -111.64 -15.64 94 5 S03 NZ O WS98a 106 -114.20 -16.01 -82 3 S08 PA O WS98a -77 -112.64 -17.20 91 12 S22 NZ O WS98a 107 -112.50 -17.17 89 6 S23 NZ O WS98a 107 -111.88 -17.12 75 7 S26 NZ O WS98a 106 -109.49 -16.72 108 12 S30 NZ O WS98a 104 -113.66 -17.34 -91 10 S39 PA O WS98a -77 -113.75 -17.35 -94 3 S40 PA O WS98a -77 -114.06 -17.39 -89 4 S42 PA O WS98a -77 -114.21 -17.41 -70 8 S43 PA O WS98a -77 -114.96 -17.49 -74 8 S45 PA O WS98a -77 -116.93 -17.79 -90 5 S48 PA O WS98a -76 34.65 67.90 15 10 LVZ EU C WB07 23 "sigma" is the standard deviation in observed phi_SKS (and was set to 10 degrees when unknown). "name" is name of seismic station. "O/C" indicates whether site is on oceanic (O) or cratonic (C) lithosphere. phi_SKS and phi_APM (i.e., the direction of the predicted absolute plate motion) are measured clockwise from north. phi_SKS values from study W01 are taken for lower anisotropic layer. References ID's: A06, Assumpção et al., [2006]; B00, Bank et al. [2000]; B99, Barruol and Hoffman [1999]; BI01, Barruol and Ismail [2001]; B97, Barruol et al. [1997]; B07, Bayer et al. [2007]; B04, Behn et al. [2004]; BC95, Bostock and Cassidy [1995]; C00, Chevrot [2000]; D99, Dricker et al. [1999]; E06, Evans et al. [2006]; F05, Fontaine et al. [2005]; F07, Fontaine et al. [2007]; F00, Fouch et al. [2000]; F06, Frederiksen et al. [2006]; G03, Gök et al. [2003]; H05; Hammond et al. [2005]; H06, Hansen et al. [2006]; H04, Harmon et al. [2004]; H03, Heintz et al. [2003]; HK05, Heintz and Kennett [2005]; H94, Helffrich et al. [1994]; H02, Helffrich et al. [2002]; JA96, James and Assumpção [1996]; K99, Kay et al. [1999]; K01, Klosko et al. [2001]; K02, Krüger et al. [2002]; K08, Kumar and Singh [2008]; M01, Müller [2001]; O02, Oreshin et al. [2002]; PK08, Piñero-Feliciangeli and Kendall [2008]; RH08, Reading and Heintz [2008]; RO98, Russo and Okal [1998]; RS94, Russo and Silver [1994]; S92, Sandvol et al. [1992]; S96, Savage et al. [1996]; S04, Schmid et al. [2004]; S02, Shragge et al. [2002]; SC88, Silver and Chan [1988]; SC91, Silver and Chan [1991]; SK93, Silver and Kaneshima [1993]; U08, Ucisik et al. [2008]; V92, Vinnik et al. [1992]; V03, Vinnik et al. [2003]; V95, Vinnik et al. [1995],V98, Vinnik et al. [1998]; W03, Walker et al. [2003]; W01, Walker et al. [2001]; WS98b, Wolfe and Solomon [1998]; WS98a, Wolfe and Silver [1998]; WB07, Wüstefeld and Bokelmann [2007]. References Assumpção, M., M. Heintz, A. Vauchez, and M. E. Silva (2006), Upper mantle anisotropy in SE and Central Brazil from SKS splitting: Evidence of asthenospheric flow around a cratonic keel, Earth and Planetary Science Letters, 250, 224-240, doi:10.1016/j.epsl.2006.07.038. Bank, C., M. Bostock, R. Ellis, and J. Cassidy (2000), A reconnaissance teleseismic study of the upper mantle and transition zone beneath the Archean Slave craton in NW Canada, Tectonophysics, 319, 151-166, doi:10.1016/S0040-1951(00)00034-2. Barruol, G., and W. Ben Ismail (2001), Upper mantle anisotropy beneath the African IRIS and Geoscope stations, Geophys. J. Int., 146, 549-561. Barruol, G., and R. Hoffmann (1999), Upper mantle anisotropy beneath the Geoscope stations, J. Geophys. Res., 104, 10,757-10,773. Barruol, G., P. G. Silver, and A. Vauchez (1997), Seismic anisotropy in the eastern United States: Deep structure of a complex continental plate, J. Geophys. Res., 102, 8329–8348. Bayer, B., C. Müller, D. W. Eaton, and W. Jokat (2007), Seismic anisotropy beneath Dronning Maud Land, Antarctica, revealed by shear wave splitting, Geophys. J. Int., 171, 339-351. Behn, M. D., C. P. Conrad, and P. G. Silver (2004), Detection of upper mantle flow associated with the African Superplume, Earth and Planetary Science Letters, 224, 259-274, doi:10.1016/j.epsl.2004.05.026. Bostock, M. G., and J. F. Cassidy (1995), Variations in SKS Splitting Across Western Canada, Geophys. Res. Lett., 22, 5–8. Chevrot, S. (2000), Multichannel analysis of shear wave splitting, J. Geophys. Res., 105, 21,579-21,590. Dricker, I., L. Vinnik, S. Roecker, and L. Makeyeva (1999), Upper-mantle flow in eastern Europe, Geophys. Res. Lett., 26, 1219-1222. Evans, M. S., J. Kendall, and R. J. Willemann (2006), Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations, Geophys. J. Int., 165, 931-942. Fontaine, F. R., G. Barruol, A. Tommasi, and G. Bokelmann (2007), Upper-mantle flow beneath French Polynesia from shear wave splitting, Geophys. J. Int., 170, 1262-1288, doi:10.1111/j.1365-246X.2007.03475.x. Fontaine, F. R., E. E. E. Hooft, P. G. Burkett, D. R. Toomey, S. C. Solomon, and P. G. Silver (2005), Shear-wave splitting beneath the Galápagos archipelago, Geophys. Res. Lett., 32, L21308, doi:10.1029/2005GL024014. Fouch, M. J., K. M. Fischer, E. M. Parmentier, M. E. Wysession, and T. J. Clarke (2000), Shear wave splitting, continental keels, and patterns of mantle flow, J. Geophys. Res., 105, 6255–6275. Frederiksen, A. W., I. J. Ferguson, D. Eaton, S. -. Miong, and E. Gowan (2006), Mantle fabric at multiple scales across an Archean-Proterozoic boundary, Grenville Front, Canada, Physics of The Earth and Planetary Interiors, 158, 240-263, doi:10.1016/j.pepi.2006.03.025. Gök, R. et al. (2003), Shear wave splitting and mantle flow beneath LA RISTRA, Geophys. Res. Lett., 30, 1614, doi:10.1029/2002GL016616. Hammond, J. O. S., J. Kendall, G. Rümpker, J. Wookey, N. Teanby, P. Joseph, T. Ryberg, and G. Stuart (2005), Upper mantle anisotropy beneath the Seychelles microcontinent, Journal of Geophysical Research, 110, B11401, doi:10.1029/2005JB003757. Hansen, S., S. Schwartz, A. Al-Amri, and A. Rodgers (2006), Combined plate motion and density-driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and seismic anisotropy, Geology, 34, 869-872, doi:10.1130/G22713.1. Harmon, N., D. W. Forsyth, K. M. Fischer, and S. C. Webb (2004), Variations in shear-wave splitting in young Pacific seafloor, Geophys. Res. Lett., 31, L15609, doi:10.1029/2004GL020495. Heintz, M., and B. L. Kennett (2005), Continental scale shear wave splitting analysis: Investigation of seismic anisotropy underneath the Australian continent, Earth and Planetary Science Letters, 236, 106-119, doi:10.1016/j.epsl.2005.05.003. Heintz, M., A. Vauchez, M. Assumpção, G. Barruol, and M. Egydio-Silva (2003), Shear wave splitting in SE Brazil: an effect of active or fossil upper mantle flow, or both?, Earth and Planetary Science Letters, 211, 79-95, doi:10.1016/S0012-821X(03)00163-8. Helffrich, G., P. Silver, and H. Given (1994), Shear wave splitting variation over short spatial scales on continents, Geophys. J. Int., 119, 561-573. Helffrich, G., D. A. Wiens, E. Vera, S. Barrientos, P. Shore, S. Robertson, and R. Adaros (2002), A teleseismic shear-wave splitting study to investigate mantle flow around South America and implications for plate-driving forces, Geophys. J. Int., 149, F1-F7, doi:10.1046/j.1365-246X.2002.01636.x. James, D. E., and M. Assumpção (1996), Tectonic implications of S-wave anisotropy beneath SE Brazil, Geophys. J. Int., 126, 1-10. Kay, I., S. Sol, J. Kendall, C. Thomson, D. White, I. Asudeh, B. Roberts, and D. Francis (1999), Shear wave splitting observations in the Archean craton of western Superior, Geophys. Res. Lett., 26, 2669-2672. Klosko, E. R., R. M. Russo, E. A. Okal, and W. P. Richardson (2001), Evidence for a rheologically strong chemical mantle root beneath the Ontong-Java Plateau, Earth and Planetary Science Letters, 186, 347-361, doi:10.1016/S0012-821X(01)00235-7. Krüger, F., F. Scherbaum, J. W. C. Rosa, R. Kind, F. Zetsche, and J. Höhne (2002), Crustal and upper mantle structure in the Amazon region (Brazil) determined with broadband mobile stations, J. Geophys. Res., 107, 2265, doi:10.1029/2001JB000598. Kumar, M. R., and A. Singh (2008), Evidence for plate motion related strain in the Indian shield from shear wave splitting measurements, J. Geophys. Res., 113, B08306, doi:10.1029/2007JB005128. Müller, C. (2001), Upper mantle seismic anisotropy beneath Antarctica and the Scotia Sea region, Geophys. J. Int., 147, 105-122. Oreshin, S., L. Vinnik, L. Makeyeva, G. Kosarev, R. Kind, and F. Wentzel (2002), Combined analysis of SKS splitting and regional P traveltimes in Siberia, Geophys. J. Int., 151, 393-402. Piñero-Feliciangeli, L., and J. Kendall (2008), Sub-slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS splitting, Tectonophysics, 462, 22-34, doi:10.1016/j.tecto.2008.01.022. Reading, A. M., and M. Heintz (2008), Seismic anisotropy of East Antarctica from shear-wave splitting: Spatially varying contributions from lithospheric structural fabric and mantle flow?, Earth and Planetary Science Letters, 268, 433-443. Russo, R. M., and P. G. Silver (1994), Trench-parallel flow beneath the Nazca plate from seismic anisotropy, Science, 263, 1105-1111, doi:10.1126/science.263.5150.1105. Russo, R. M., and E. A. Okal (1998), Shear wave splitting and upper mantle deformation in French Polynesia: Evidence for small-scale heterogeneity related to the Society hotspot, J. Geophys. Res., 103, 15,089-15,108. Sandvol, E., J. Ni, S. Ozalaybey, and J. Schlue (1992), Shear-wave splitting in the Rio Grande Rift, Geophys. Res. Lett., 19, 2337-2340. Savage, M. K., A. F. Sheehan, and A. Lerner-Lam (1996), Shear wave splitting across the Rocky Mountain front, Geophys. Res. Lett., 23, 2267-2270. Schmid, C., S. van der Lee, and D. Giardini (2004), Delay times and shear wave splitting in the Mediterranean region, Geophys. J. Int., 159, 275-290. Shragge, J., M. G. Bostock, C. G. Bank, and R. M. Ellis (2002), Integrated teleseismic studies of the southern Alberta upper mantle, Can. J. Earth Sci., 39, 399-411. Silver, P. G., and W. W. Chan (1988), Implications for continental structure and evolution from seismic anisotropy, Nature, 335, 34-39, doi:10.1038/335034a0. Silver, P. G., and S. Kaneshima (1993), Constraints on mantle anisotropy beneath Precambrian North America from a transportable teleseismic experiment, Geophys. Res. Lett., 20, 1127-1130. Silver, P. G., and W. W. Chan (1991), Shear-wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16,429-16,454. Ucisik, N., O. Gudmundsson, W. Hanka, T. Dahl-Jensen, K. Mosegaard, and K. Priestley (2008), Variations of shear-wave splitting in Greenland: Mantle anisotropy and possible impact of the Iceland plume, Tectonophysics, 462, 137-148, doi:10.1016/j.tecto.2007.11.074. Vinnik, L., J. Montagner, N. Girardin, I. Dricker, and J. Saul (2003), Comment on “Shear-wave splitting to test mantle deformation models around Hawaii” by Walker et al., Geophys. Res. Lett., 30, 1675, doi:10.1029/2002GL015751. Vinnik, L., S. Chevrot, and J. Montagner (1998), Seismic evidence of flow at the base of the upper mantle, Geophys. Res. Lett., 25, 1995-1998. Vinnik, L. P., L. I. Makeyeva, A. Milev, and A. Y. Usenko (1992), Global patterns of azimuthal anisotropy and deformations in the continental mantle, Geophys. J. Int., 111, 433-447. Vinnik, L. P., R. W. E. Green, and L. O. Nicolaysen (1995), Recent deformations of the deep continental root beneath southern Africa, Nature, 375(6526), 50-52, doi:10.1038/375050a0. Walker, K. T., G. H. R. Bokelmann, and S. L. Klemperer (2003), Reply to “Shear-wave splitting to test mantle deformation models around Hawaii” by Vinnik et al., Geophys. Res. Lett., 30, 1676, doi:10.1029/2002GL016712. Walker, K. T., G. H. R. Bokelmann, and S. L. Klemperer (2001), Shear-wave splitting to test mantle deformation models around Hawaii, Geophys. Res. Lett., 28, 4319–4322. Wolfe, C. J., and P. G. Silver (1998), Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations, J. Geophys. Res., 103, 749–771. Wolfe, C. J., and S. C. Solomon (1998), Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise, Science, 280, 1230-1232. Wüstefeld, A., and G. Bokelmann (2007), Null detection in shear-wave splitting measurements, Bull. Seismol. Soc. Am., 97, 1204-1211, doi:10.1785/0120060190.